These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 30183018)
1. Direct comparison between subnanometer hydration structures on hydrophilic and hydrophobic surfaces via three-dimensional scanning force microscopy. Yang CW; Miyazawa K; Fukuma T; Miyata K; Hwang IS Phys Chem Chem Phys; 2018 Sep; 20(36):23522-23527. PubMed ID: 30183018 [TBL] [Abstract][Full Text] [Related]
2. High-Resolution Characterization of Preferential Gas Adsorption at the Graphene-Water Interface. Ko HC; Hsu WH; Yang CW; Fang CK; Lu YH; Hwang IS Langmuir; 2016 Nov; 32(43):11164-11171. PubMed ID: 27308947 [TBL] [Abstract][Full Text] [Related]
3. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. Uhlig MR; Benaglia S; Thakkar R; Comer J; Garcia R Nanoscale; 2021 Mar; 13(10):5275-5283. PubMed ID: 33624666 [TBL] [Abstract][Full Text] [Related]
4. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Fukuma T Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817 [TBL] [Abstract][Full Text] [Related]
5. Impact of hydrophilic/hydrophobic surface chemistry on hydration forces in the absence of confinement. Kaggwa GB; Nalam PC; Kilpatrick JI; Spencer ND; Jarvis SP Langmuir; 2012 Apr; 28(16):6589-94. PubMed ID: 22468721 [TBL] [Abstract][Full Text] [Related]
6. Molecular features of hydration layers probed by atomic force microscopy. Zhang Z; Ryu S; Ahn Y; Jang J Phys Chem Chem Phys; 2018 Dec; 20(48):30492-30501. PubMed ID: 30511076 [TBL] [Abstract][Full Text] [Related]
7. Gas molecules sandwiched in hydration layers at graphite/water interfaces. Teshima H; Li QY; Takata Y; Takahashi K Phys Chem Chem Phys; 2020 Jun; 22(24):13629-13636. PubMed ID: 32519700 [TBL] [Abstract][Full Text] [Related]
8. Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. Kobayashi K; Oyabu N; Kimura K; Ido S; Suzuki K; Imai T; Tagami K; Tsukada M; Yamada H J Chem Phys; 2013 May; 138(18):184704. PubMed ID: 23676061 [TBL] [Abstract][Full Text] [Related]
9. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy. Miyazawa K; Kobayashi N; Watkins M; Shluger AL; Amano K; Fukuma T Nanoscale; 2016 Apr; 8(13):7334-42. PubMed ID: 26980273 [TBL] [Abstract][Full Text] [Related]
10. Effects of Water on Solvation Layers of Imidazolium-Type Room Temperature Ionic Liquids on Silica and Mica. Sakai K; Okada K; Uka A; Misono T; Endo T; Sasaki S; Abe M; Sakai H Langmuir; 2015 Jun; 31(22):6085-91. PubMed ID: 25996798 [TBL] [Abstract][Full Text] [Related]
11. Atomic-Scale 3D Local Hydration Structures Influenced by Water-Restricting Dimensions. Umeda K; Kobayashi K; Minato T; Yamada H Langmuir; 2018 Aug; 34(31):9114-9121. PubMed ID: 29985633 [TBL] [Abstract][Full Text] [Related]
12. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy. Fukuma T; Garcia R ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619 [TBL] [Abstract][Full Text] [Related]
13. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Fukuma T Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337 [TBL] [Abstract][Full Text] [Related]
14. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Leng C; Sun S; Zhang K; Jiang S; Chen Z Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530 [TBL] [Abstract][Full Text] [Related]
15. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces. Miyazawa K; Watkins M; Shluger AL; Fukuma T Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216 [TBL] [Abstract][Full Text] [Related]
16. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis. Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633 [TBL] [Abstract][Full Text] [Related]
17. The role of ambient ice-like water adlayers formed at the interfaces of graphene on hydrophobic and hydrophilic substrates probed using scanning probe microscopy. Gowthami T; Tamilselvi G; Jacob G; Raina G Phys Chem Chem Phys; 2015 Jun; 17(21):13964-72. PubMed ID: 25947671 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Water Is Separated from a Hydrophobic Silica Surface by a Gap of 1.2 nm. Arvelo DM; Comer J; Schmit J; Garcia R ACS Nano; 2024 Jul; 18(28):18683-18692. PubMed ID: 38973716 [TBL] [Abstract][Full Text] [Related]
19. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities. Wang X; Zhao B; Ma W; Wang Y; Gao X; Tai R; Zhou X; Zhang L Chemphyschem; 2015 Apr; 16(5):1003-7. PubMed ID: 25694234 [TBL] [Abstract][Full Text] [Related]
20. Directly probing the effects of ions on hydration forces at interfaces. Kilpatrick JI; Loh SH; Jarvis SP J Am Chem Soc; 2013 Feb; 135(7):2628-34. PubMed ID: 23398487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]