These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 30183055)

  • 21. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity.
    Khan AS; Livingstone DC; Hurd CL; Duchcherer J; Misiaszek JE; Gorassini MA; Manns PJ; Yang JF
    J Neuroeng Rehabil; 2019 Nov; 16(1):145. PubMed ID: 31752911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Duration of Outpatient Physical Therapy Episodes for Individuals with Spinal Cord Injury Based on Locomotor Training Strategy.
    Garnier-Villarreal M; Pinto D; Mummidisetty CK; Jayaraman A; Tefertiller C; Charlifue S; Taylor HB; Chang SH; McCombs N; Furbish CL; Field-Fote EC; Heinemann AW
    Arch Phys Med Rehabil; 2022 Apr; 103(4):665-675. PubMed ID: 34648804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exoskeleton-based exercises for overground gait and balance rehabilitation in spinal cord injury: a systematic review of dose and dosage parameters.
    Nepomuceno P; Souza WH; Pakosh M; Musselman KE; Craven BC
    J Neuroeng Rehabil; 2024 May; 21(1):73. PubMed ID: 38705999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exoskeleton home and community use in people with complete spinal cord injury.
    van Dijsseldonk RB; van Nes IJW; Geurts ACH; Keijsers NLW
    Sci Rep; 2020 Sep; 10(1):15600. PubMed ID: 32973244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic Locomotor Training Leads to Cardiovascular Changes in Individuals With Incomplete Spinal Cord Injury Over a 24-Week Rehabilitation Period: A Randomized Controlled Pilot Study.
    Evans RW; Shackleton CL; West S; Derman W; Laurie Rauch HG; Baalbergen E; Albertus Y
    Arch Phys Med Rehabil; 2021 Aug; 102(8):1447-1456. PubMed ID: 33839105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.
    Chisholm AE; Alamro RA; Williams AM; Lam T
    J Neuroeng Rehabil; 2017 Apr; 14(1):27. PubMed ID: 28399877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study (.).
    Cruciger O; Schildhauer TA; Meindl RC; Tegenthoff M; Schwenkreis P; Citak M; Aach M
    Disabil Rehabil Assist Technol; 2016 Aug; 11(6):529-34. PubMed ID: 25382234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinician-Focused Overview of Bionic Exoskeleton Use After Spinal Cord Injury.
    Palermo AE; Maher JL; Baunsgaard CB; Nash MS
    Top Spinal Cord Inj Rehabil; 2017; 23(3):234-244. PubMed ID: 29339899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
    Hartigan C; Kandilakis C; Dalley S; Clausen M; Wilson E; Morrison S; Etheridge S; Farris R
    Top Spinal Cord Inj Rehabil; 2015; 21(2):93-9. PubMed ID: 26364278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applicability, validation and reproducibility of the Spinal Cord Independence Measure version III (SCIM III) in patients with non-traumatic spinal cord lesions.
    Almeida Cd; Coelho JN; Riberto M
    Disabil Rehabil; 2016 Nov; 38(22):2229-34. PubMed ID: 26800790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examining the Effects of a Powered Exoskeleton on Quality of Life and Secondary Impairments in People Living With Spinal Cord Injury.
    Juszczak M; Gallo E; Bushnik T
    Top Spinal Cord Inj Rehabil; 2018; 24(4):336-342. PubMed ID: 30459496
    [No Abstract]   [Full Text] [Related]  

  • 34. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study.
    Xiang XN; Ding MF; Zong HY; Liu Y; Cheng H; He CQ; He HC
    Spinal Cord; 2020 Jul; 58(7):787-794. PubMed ID: 32034295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury.
    Yıldırım MA; Öneş K; Gökşenoğlu G
    Turk J Med Sci; 2019 Jun; 49(3):838-843. PubMed ID: 31134784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single-subject study of robotic upper limb training in the subacute phase for four persons with cervical spinal cord injury.
    Sørensen L; Månum G
    Spinal Cord Ser Cases; 2019; 5():29. PubMed ID: 31240123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction.
    Platz T; Gillner A; Borgwaldt N; Kroll S; Roschka S
    Biomed Res Int; 2016; 2016():8459018. PubMed ID: 27610382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid.
    Birch N; Graham J; Priestley T; Heywood C; Sakel M; Gall A; Nunn A; Signal N
    J Neuroeng Rehabil; 2017 Jun; 14(1):60. PubMed ID: 28629390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.