BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 30183278)

  • 21. Biosynthesis of the Metalloclusters of Nitrogenases.
    Hu Y; Ribbe MW
    Annu Rev Biochem; 2016 Jun; 85():455-83. PubMed ID: 26844394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction.
    Dilworth MJ; Eldridge ME; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogenase: a draft mechanism.
    Hoffman BM; Lukoyanov D; Dean DR; Seefeldt LC
    Acc Chem Res; 2013 Feb; 46(2):587-95. PubMed ID: 23289741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryo-annealing of Photoreduced CdS Quantum Dot-Nitrogenase MoFe Protein Complexes Reveals the Kinetic Stability of the E
    Vansuch GE; Mulder DW; Chica B; Ruzicka JL; Yang ZY; Pellows LM; Willis MA; Brown KA; Seefeldt LC; Peters JW; Dukovic G; King PW
    J Am Chem Soc; 2023 Oct; 145(39):21165-21169. PubMed ID: 37729189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The energetics of N
    Siegbahn PEM; Wei WJ
    Phys Chem Chem Phys; 2024 Jan; 26(3):1684-1695. PubMed ID: 38126534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK
    Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal substitution in the active site of nitrogenase MFe(7)S(9) (M = Mo(4+), V(3+), Fe(3+)).
    Lovell T; Torres RA; Han WG; Liu T; Case DA; Noodleman L
    Inorg Chem; 2002 Nov; 41(22):5744-53. PubMed ID: 12401079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction.
    Fisher K; Dilworth MJ; Newton WE
    Biochemistry; 2006 Apr; 45(13):4190-8. PubMed ID: 16566593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases.
    Lee CC; Ribbe MW; Hu Y
    Met Ions Life Sci; 2014; 14():147-76. PubMed ID: 25416394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.
    Lukoyanov D; Yang ZY; Khadka N; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2015 Mar; 137(10):3610-5. PubMed ID: 25741750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench (57)Fe Mössbauer Data, and a Hydride Resting State.
    Del Castillo TJ; Thompson NB; Peters JC
    J Am Chem Soc; 2016 Apr; 138(16):5341-50. PubMed ID: 27026402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of VnfH, the iron protein component of vanadium nitrogenase.
    Rohde M; Trncik C; Sippel D; Gerhardt S; Einsle O
    J Biol Inorg Chem; 2018 Oct; 23(7):1049-1056. PubMed ID: 30141094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comparative Analysis of the CO-Reducing Activities of MoFe Proteins Containing Mo- and V-Nitrogenase Cofactors.
    Lee CC; Tanifuji K; Newcomb M; Liedtke J; Hu Y; Ribbe MW
    Chembiochem; 2018 Apr; 19(7):649-653. PubMed ID: 29363247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. H
    Jiang H; Ryde U
    Phys Chem Chem Phys; 2024 Jan; 26(2):1364-1375. PubMed ID: 38108422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A V-Nitrogenase Variant Containing a Citrate-Substituted Cofactor.
    Newcomb MP; Lee CC; Tanifuji K; Jasniewski AJ; Liedtke J; Ribbe MW; Hu Y
    Chembiochem; 2020 Jun; 21(12):1742-1748. PubMed ID: 31747483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a Mo-Nitrogenase Variant Containing a Citrate-Substituted Cofactor.
    Liedtke J; Lee CC; Tanifuji K; Jasniewski AJ; Ribbe MW; Hu Y
    Chembiochem; 2021 Jan; 22(1):151-155. PubMed ID: 32918851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state.
    Rittle J; McCrory CC; Peters JC
    J Am Chem Soc; 2014 Oct; 136(39):13853-62. PubMed ID: 25184795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N
    Jiang H; Ryde U
    Dalton Trans; 2023 Jul; 52(26):9104-9120. PubMed ID: 37338432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.