These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 30183278)

  • 41. N
    Jiang H; Ryde U
    Dalton Trans; 2023 Jul; 52(26):9104-9120. PubMed ID: 37338432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
    Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC
    Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase.
    Miller RW; Eady RR
    Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein?
    Lukoyanov D; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2010 Mar; 132(8):2526-7. PubMed ID: 20121157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The structure of vanadium nitrogenase reveals an unusual bridging ligand.
    Sippel D; Einsle O
    Nat Chem Biol; 2017 Sep; 13(9):956-960. PubMed ID: 28692069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vanadium (V) is reduced by the 'as isolated' nitrogenase Fe-protein at neutral pH.
    Fisher K; Lowe DJ; Petersen J
    Chem Commun (Camb); 2006 Jul; (26):2807-9. PubMed ID: 17009470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extremely large differences in DFT energies for nitrogenase models.
    Cao L; Ryde U
    Phys Chem Chem Phys; 2019 Jan; 21(5):2480-2488. PubMed ID: 30652711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
    Schneider K; Gollan U; Dröttboom M; Selsemeier-Voigt S; Müller A
    Eur J Biochem; 1997 Mar; 244(3):789-800. PubMed ID: 9108249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A confirmation of the quench-cryoannealing relaxation protocol for identifying reduction states of freeze-trapped nitrogenase intermediates.
    Lukoyanov D; Yang ZY; Duval S; Danyal K; Dean DR; Seefeldt LC; Hoffman BM
    Inorg Chem; 2014 Apr; 53(7):3688-93. PubMed ID: 24635454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.
    Rees JA; Bjornsson R; Schlesier J; Sippel D; Einsle O; DeBeer S
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13249-52. PubMed ID: 26376620
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structures and reaction dynamics of N
    Dance I
    Dalton Trans; 2021 Dec; 50(48):18212-18237. PubMed ID: 34860237
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons.
    Yang ZY; Dean DR; Seefeldt LC
    J Biol Chem; 2011 Jun; 286(22):19417-21. PubMed ID: 21454640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A bound reaction intermediate sheds light on the mechanism of nitrogenase.
    Sippel D; Rohde M; Netzer J; Trncik C; Gies J; Grunau K; Djurdjevic I; Decamps L; Andrade SLA; Einsle O
    Science; 2018 Mar; 359(6383):1484-1489. PubMed ID: 29599235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure.
    Natzke J; Noar J; Bruno-Bárcena JM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915110
    [No Abstract]   [Full Text] [Related]  

  • 56. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
    Clarke TA; Maritano S; Eady RR
    Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Competitive 15N kinetic isotope effects of nitrogenase-catalyzed dinitrogen reduction.
    Sra AK; Hu Y; Martin GE; Snow DD; Ribbe MW; Kohen A
    J Am Chem Soc; 2004 Oct; 126(40):12768-9. PubMed ID: 15469259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
    Duyvis MG; Wassink H; Haaker H
    Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural analysis of the reductase component AnfH of iron-only nitrogenase from Azotobacter vinelandii.
    Trncik C; Müller T; Franke P; Einsle O
    J Inorg Biochem; 2022 Feb; 227():111690. PubMed ID: 34929539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ATP-Independent Turnover of Dinitrogen Intermediates Captured on the Nitrogenase Cofactor.
    Lee CC; Stang M; Ribbe MW; Hu Y
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202400273. PubMed ID: 38527309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.