BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30183300)

  • 1. Wavelength-Dependent Exciton-Vibrational Coupling in the Water-Soluble Chlorophyll Binding Protein Revealed by Multilevel Theory of Difference Fluorescence Line-Narrowing.
    Adolphs J; Maier F; Renger T
    J Phys Chem B; 2018 Sep; 122(38):8891-8899. PubMed ID: 30183300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. I. Difference fluorescence line-narrowing.
    Pieper J; Rätsep M; Trostmann I; Paulsen H; Renger G; Freiberg A
    J Phys Chem B; 2011 Apr; 115(14):4042-52. PubMed ID: 21417350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments.
    Pieper J; Rätsep M; Trostmann I; Schmitt FJ; Theiss C; Paulsen H; Eichler HJ; Freiberg A; Renger G
    J Phys Chem B; 2011 Apr; 115(14):4053-65. PubMed ID: 21417356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches.
    Friedl C; Fedorov DG; Renger T
    Phys Chem Chem Phys; 2022 Feb; 24(8):5014-5038. PubMed ID: 35142765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: importance of non-secular contributions.
    Dinh TC; Renger T
    J Chem Phys; 2015 Jan; 142(3):034104. PubMed ID: 25612686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hole-Burning Spectroscopy on Excitonically Coupled Pigments in Proteins: Theory Meets Experiment.
    Adolphs J; Berrer M; Renger T
    J Am Chem Soc; 2016 Mar; 138(9):2993-3001. PubMed ID: 26811003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Line narrowing of excited-state transitions in nonlinear polarization spectroscopy: application to water-soluble chlorophyll-binding protein.
    Schoth M; Richter M; Knorr A; Renger T
    Phys Rev Lett; 2012 Apr; 108(17):178104. PubMed ID: 22680909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a.
    Rätsep M; Linnanto J; Freiberg A
    J Chem Phys; 2009 May; 130(19):194501. PubMed ID: 19466837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water in Oil Emulsions: A New System for Assembling Water-soluble Chlorophyll-binding Proteins with Hydrophobic Pigments.
    Bednarczyk D; Noy D
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the Protein Environment Can Tune the Energy, the Coupling, and the Ultrafast Dynamics of Interacting Chlorophylls: The Example of the Water-Soluble Chlorophyll Protein.
    Fresch E; Meneghin E; Agostini A; Paulsen H; Carbonera D; Collini E
    J Phys Chem Lett; 2020 Feb; 11(3):1059-1067. PubMed ID: 31952446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence line narrowing studies on isolated chlorophyll molecules.
    Telfer A; Pascal AA; Bordes L; Barber J; Robert B
    J Phys Chem B; 2010 Feb; 114(6):2255-60. PubMed ID: 20095598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher Order Vibronic Sidebands of Chlorophyll
    Rätsep M; Linnanto JM; Freiberg A
    J Phys Chem B; 2019 Aug; 123(33):7149-7156. PubMed ID: 31356081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.
    Rosnik AM; Curutchet C
    J Chem Theory Comput; 2015 Dec; 11(12):5826-37. PubMed ID: 26610205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Consistent Molecular Dynamics Force Fields for Biological Chromophores via Force Matching.
    Claridge K; Troisi A
    J Phys Chem B; 2019 Jan; 123(2):428-438. PubMed ID: 30565460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803.
    Peterman EJ; Wenk SO; Pullerits T; Pâlsson LO; van Grondelle R; Dekker JP; Rögner M; van Amerongen H
    Biophys J; 1998 Jul; 75(1):389-98. PubMed ID: 9649396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling.
    Leupold D; Teuchner K; Ehlert J; Irrgang KD; Renger G; Lokstein H
    Biophys J; 2002 Mar; 82(3):1580-5. PubMed ID: 11867470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton states and optical properties of the CP26 photosynthetic protein.
    Khokhlov DV; Belov AS; Eremin VV
    Comput Biol Chem; 2018 Feb; 72():105-112. PubMed ID: 29277259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing.
    Pieper J; Rätsep M; Irrgang KD; Freiberg A
    J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational equilibration in absorption difference spectra of chlorophyll a.
    Struve WS
    Biophys J; 1995 Dec; 69(6):2739-44. PubMed ID: 8599680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of 2D electronic spectroscopy of water soluble chlorophyll-binding protein (WSCP): Signatures of Chl b derivate.
    Riedl M; Renger T; Seibt J
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38726933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.