BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30183339)

  • 1. Bridging angiogenesis and immune evasion in the hypoxic tumor microenvironment.
    Schito L
    Am J Physiol Regul Integr Comp Physiol; 2018 Dec; 315(6):R1072-R1084. PubMed ID: 30183339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer.
    Missiaen R; Mazzone M; Bergers G
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):107-116. PubMed ID: 29935312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia.
    Li C; Liu T; Bazhin AV; Yang Y
    J Cell Physiol; 2017 Sep; 232(9):2312-2322. PubMed ID: 27935039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia: Turning vessels into vassals of cancer immunotolerance.
    Schito L; Rey S
    Cancer Lett; 2020 Sep; 487():74-84. PubMed ID: 32470491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-Inducible PIM Kinase Expression Promotes Resistance to Antiangiogenic Agents.
    Casillas AL; Toth RK; Sainz AG; Singh N; Desai AA; Kraft AS; Warfel NA
    Clin Cancer Res; 2018 Jan; 24(1):169-180. PubMed ID: 29084916
    [No Abstract]   [Full Text] [Related]  

  • 6. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors.
    Kes MMG; Van den Bossche J; Griffioen AW; Huijbers EJM
    Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188427. PubMed ID: 32961257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.
    Fukumura D; Kloepper J; Amoozgar Z; Duda DG; Jain RK
    Nat Rev Clin Oncol; 2018 May; 15(5):325-340. PubMed ID: 29508855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of hypoxia-inducible factor 1 in tumor immune evasion.
    You L; Wu W; Wang X; Fang L; Adam V; Nepovimova E; Wu Q; Kuca K
    Med Res Rev; 2021 May; 41(3):1622-1643. PubMed ID: 33305856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature.
    Shi S; Chen L; Huang G
    Med Oncol; 2013 Dec; 30(4):698. PubMed ID: 23982676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy.
    Tartour E; Pere H; Maillere B; Terme M; Merillon N; Taieb J; Sandoval F; Quintin-Colonna F; Lacerda K; Karadimou A; Badoual C; Tedgui A; Fridman WH; Oudard S
    Cancer Metastasis Rev; 2011 Mar; 30(1):83-95. PubMed ID: 21249423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of anti-angiogenic factors in the pathogenesis of breast cancer: A review of therapeutic potential.
    Ruan L; Zhang S; Chen X; Liang W; Xie Q
    Pathol Res Pract; 2022 Aug; 236():153956. PubMed ID: 35700578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting hypoxic tumor microenvironment in pancreatic cancer.
    Tao J; Yang G; Zhou W; Qiu J; Chen G; Luo W; Zhao F; You L; Zheng L; Zhang T; Zhao Y
    J Hematol Oncol; 2021 Jan; 14(1):14. PubMed ID: 33436044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer.
    Georganaki M; van Hooren L; Dimberg A
    Front Immunol; 2018; 9():3081. PubMed ID: 30627131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy.
    Yetkin-Arik B; Kastelein AW; Klaassen I; Jansen CHJR; Latul YP; Vittori M; Biri A; Kahraman K; Griffioen AW; Amant F; Lok CAR; Schlingemann RO; van Noorden CJF
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188446. PubMed ID: 33058997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Hypoxia-Inducible Factors for Antiangiogenic Cancer Therapy.
    Rey S; Schito L; Wouters BG; Eliasof S; Kerbel RS
    Trends Cancer; 2017 Jul; 3(7):529-541. PubMed ID: 28718406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis.
    Yang M; Mu Y; Yu X; Gao D; Zhang W; Li Y; Liu J; Sun C; Zhuang J
    Biomed Pharmacother; 2024 Jul; 176():116783. PubMed ID: 38796970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer.
    Sui H; Zhao J; Zhou L; Wen H; Deng W; Li C; Ji Q; Liu X; Feng Y; Chai N; Zhang Q; Cai J; Li Q
    Cancer Lett; 2017 Sep; 403():86-97. PubMed ID: 28602978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.
    Hameed S; Bhattarai P; Dai Z
    Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies.
    Abou Khouzam R; Brodaczewska K; Filipiak A; Zeinelabdin NA; Buart S; Szczylik C; Kieda C; Chouaib S
    Front Immunol; 2020; 11():613114. PubMed ID: 33552076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.