BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30183339)

  • 21. LKB1 and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer.
    Bonanno L; Zulato E; Pavan A; Attili I; Pasello G; Conte P; Indraccolo S
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30995715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-angiogenic effects of CD73-specific siRNA-loaded nanoparticles in breast cancer-bearing mice.
    Ghalamfarsa G; Rastegari A; Atyabi F; Hassannia H; Hojjat-Farsangi M; Ghanbari A; Anvari E; Mohammadi J; Azizi G; Masjedi A; Yousefi M; Yousefi B; Hadjati J; Jadidi-Niaragh F
    J Cell Physiol; 2018 Oct; 233(10):7165-7177. PubMed ID: 29741783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting tumor vascularization: promising strategies for vascular normalization.
    Zheng R; Li F; Li F; Gong A
    J Cancer Res Clin Oncol; 2021 Sep; 147(9):2489-2505. PubMed ID: 34148156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antiangiogenic therapy: a novel approach to overcome tumor hypoxia.
    Peng F; Chen M
    Chin J Cancer; 2010 Aug; 29(8):715-20. PubMed ID: 20663317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel hypoxia-dependent 2-nitroimidazole KIN-841 inhibits tumour-specific angiogenesis by blocking production of angiogenic factors.
    Shimamura M; Nagasawa H; Ashino H; Yamamoto Y; Hazato T; Uto Y; Hori H; Inayama S
    Br J Cancer; 2003 Jan; 88(2):307-13. PubMed ID: 12610518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review).
    Salinas-Vera YM; Marchat LA; Gallardo-Rincón D; Ruiz-García E; Astudillo-De La Vega H; Echavarría-Zepeda R; López-Camarillo C
    Int J Mol Med; 2019 Feb; 43(2):657-670. PubMed ID: 30483765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion.
    Shao X; Hua S; Feng T; Ocansey DKW; Yin L
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment.
    Nagasawa H
    J Pharmacol Sci; 2011; 115(4):446-52. PubMed ID: 21422725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment.
    Rani V; Prabhu A
    Curr Pharm Des; 2021; 27(7):919-931. PubMed ID: 33006535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxia: a key regulator of angiogenesis in cancer.
    Liao D; Johnson RS
    Cancer Metastasis Rev; 2007 Jun; 26(2):281-90. PubMed ID: 17603752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic effects of antiangiogenic drugs in tumors: therapeutic implications.
    Quintieri L; Selmy M; Indraccolo S
    Biochem Pharmacol; 2014 May; 89(2):162-70. PubMed ID: 24607274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miRNA Targeting Angiogenesis as a Potential Therapeutic Approach in the Treatment of Colorectal Cancers.
    Amerizadeh F; Khazaei M; Maftouh M; Mardani R; Bahrami A
    Curr Pharm Des; 2018; 24(39):4668-4674. PubMed ID: 30636586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combination therapy of simvastatin and 5, 6-dimethylxanthenone-4-acetic acid synergistically suppresses the aggressiveness of B16.F10 melanoma cells.
    Rauca VF; Licarete E; Luput L; Sesarman A; Patras L; Bulzu P; Rakosy-Tican E; Banciu M
    PLoS One; 2018; 13(8):e0202827. PubMed ID: 30138430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiogenesis and prostate cancer tumor growth.
    Nicholson B; Theodorescu D
    J Cell Biochem; 2004 Jan; 91(1):125-50. PubMed ID: 14689586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment.
    Deep G; Panigrahi GK
    Crit Rev Oncog; 2015; 20(5-6):419-34. PubMed ID: 27279239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normalization of tumor vasculature: A potential strategy to increase the efficiency of immune checkpoint blockades in cancers.
    Shi Y; Li Y; Wu B; Zhong C; Lang Q; Liang Z; Zhang Y; Lv C; Han S; Yu Y; Xu F; Tian Y
    Int Immunopharmacol; 2022 Sep; 110():108968. PubMed ID: 35764018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression.
    Schito L; Semenza GL
    Trends Cancer; 2016 Dec; 2(12):758-770. PubMed ID: 28741521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alleviating hypoxia to improve cancer immunotherapy.
    Fan P; Zhang N; Candi E; Agostini M; Piacentini M; ; Shi Y; Huang Y; Melino G
    Oncogene; 2023 Dec; 42(49):3591-3604. PubMed ID: 37884747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity.
    Martin JD; Fukumura D; Duda DG; Boucher Y; Jain RK
    Cold Spring Harb Perspect Med; 2016 Dec; 6(12):. PubMed ID: 27663981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies.
    Croci DO; Mendez-Huergo SP; Cerliani JP; Rabinovich GA
    Handb Exp Pharmacol; 2018; 249():31-61. PubMed ID: 28405776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.