These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 30183644)
1. WeCoMXP: Weighted Connectivity Measure Integrating Co-Methylation, Co-Expression and Protein-Protein Interactions for Gene-Module Detection. Mallik S; Bandyopadhyay S IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):690-703. PubMed ID: 30183644 [TBL] [Abstract][Full Text] [Related]
2. Detecting TF-miRNA-gene network based modules for 5hmC and 5mC brain samples: a intra- and inter-species case-study between human and rhesus. Maulik U; Sen S; Mallik S; Bandyopadhyay S BMC Genet; 2018 Jan; 19(1):9. PubMed ID: 29357837 [TBL] [Abstract][Full Text] [Related]
3. Identifying Functional Modules in Co-Regulatory Networks Through Overlapping Spectral Clustering. Luo J; Yin Y; Pan C; Xiang G; Tu NH; Jiawei Luo ; Ying Yin ; Chu Pan ; Gen Xiang ; Nguyen Hoang Tu ; Pan C; Xiang G; Yin Y; Luo J; Tu NH IEEE Trans Nanobioscience; 2018 Apr; 17(2):134-144. PubMed ID: 29870337 [TBL] [Abstract][Full Text] [Related]
4. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks. Loers JU; Vermeirssen V BMC Bioinformatics; 2022 Sep; 23(1):363. PubMed ID: 36064320 [TBL] [Abstract][Full Text] [Related]
5. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining. Wang W; Zhang K; Zhang H; Li M; Zhao Y; Wang B; Xin W; Yang W; Zhang J; Yue S; Yang X Med Sci Monit; 2019 Dec; 25():9949-9962. PubMed ID: 31875420 [TBL] [Abstract][Full Text] [Related]
6. SNMRS: An advanced measure for Co-expression network analysis. Patowary P; Bhattacharyya DK; Barah P Comput Biol Med; 2022 Apr; 143():105222. PubMed ID: 35121360 [TBL] [Abstract][Full Text] [Related]
7. Co-expression analysis provides important module and pathways of human dilated cardiomyopathy. Xiao J; Li F; Yang Q; Zeng XF; Ke ZP J Cell Physiol; 2020 Jan; 235(1):494-503. PubMed ID: 31236962 [TBL] [Abstract][Full Text] [Related]
8. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data. Luo J; Xiang G; Pan C IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569 [TBL] [Abstract][Full Text] [Related]
9. Affection of Comt1 genetype on anxiety and nociceptive sensitivity: an Ego-network analysis approach. Li W; Zhao S; Zhang Z Mol Pain; 2017; 13():1744806917736973. PubMed ID: 28969474 [TBL] [Abstract][Full Text] [Related]
10. Depicting the genetic architecture of pediatric cancers through an integrative gene network approach. Savary C; Kim A; Lespagnol A; Gandemer V; Pellier I; Andrieu C; Pagès G; Galibert MD; Blum Y; de Tayrac M Sci Rep; 2020 Jan; 10(1):1224. PubMed ID: 31988326 [TBL] [Abstract][Full Text] [Related]
11. Co-Expression Network Analysis Identifies miRNA⁻mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites. Ammah AA; Do DN; Bissonnette N; Gévry N; Ibeagha-Awemu EM Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149509 [TBL] [Abstract][Full Text] [Related]
12. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related]
13. Gene expression profiling and bioinformatics analysis of gastric carcinoma. Liu N; Liu X; Zhou N; Wu Q; Zhou L; Li Q Exp Mol Pathol; 2014 Jun; 96(3):361-6. PubMed ID: 24589858 [TBL] [Abstract][Full Text] [Related]
14. Candidate genes and microRNAs for glioma pathogenesis and prognosis based on gene expression profiles. Xie C; Xu M; Lu D; Zhang W; Wang L; Wang H; Li J; Ren F; Wang C Mol Med Rep; 2018 Sep; 18(3):2715-2723. PubMed ID: 30015885 [TBL] [Abstract][Full Text] [Related]
15. Active Module Identification From Multilayer Weighted Gene Co-Expression Networks: A Continuous Optimization Approach. Li D; Pan Z; Hu G; Anderson G; He S IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2239-2248. PubMed ID: 32011261 [TBL] [Abstract][Full Text] [Related]
16. Co-Expression Network and Pathway Analyses Reveal Important Modules of miRNAs Regulating Milk Yield and Component Traits. Do DN; Dudemaine PL; Li R; Ibeagha-Awemu EM Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28718798 [TBL] [Abstract][Full Text] [Related]
17. In Silico Integration Approach Reveals Key MicroRNAs and Their Target Genes in Follicular Thyroid Carcinoma. Hu S; Liao Y; Zheng J; Gou L; Regmi A; Zafar MI; Chen L Biomed Res Int; 2019; 2019():2725192. PubMed ID: 31032340 [TBL] [Abstract][Full Text] [Related]
18. Identification of pancreatic cancer type related factors by Weighted Gene Co-Expression Network Analysis. Wang W; Xing H; Huang C; Pan H; Li D Med Oncol; 2020 Mar; 37(4):33. PubMed ID: 32200436 [TBL] [Abstract][Full Text] [Related]
19. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy. Recamonde-Mendoza M; Werhli AV; Biolo A Gene; 2019 May; 698():157-169. PubMed ID: 30844478 [TBL] [Abstract][Full Text] [Related]
20. A Novel Method to Detect Functional microRNA Regulatory Modules by Bicliques Merging. Liang C; Li Y; Luo J IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):549-56. PubMed ID: 27295638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]