These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30183675)

  • 41. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.
    Salehizadeh SM; Dao DK; Chong JW; McManus D; Darling C; Mendelson Y; Chon KH
    Ann Biomed Eng; 2014 Nov; 42(11):2251-63. PubMed ID: 24823655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive filtering.
    Fallet S; Vesin JM
    Physiol Meas; 2017 Feb; 38(2):155-170. PubMed ID: 28055986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment.
    Guo T; Cao Z; Zhang Z; Li D; Yu M
    Biomed Eng Online; 2015 Aug; 14():76. PubMed ID: 26242309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust Beat-to-Beat Interval from Wearable PPG using RLS and SSA.
    Bhattacharjee T; Choudhury AD; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4946-4952. PubMed ID: 31946970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing.
    Banerjee T; Gavas RD; Bs M; Karmakar S; Ramakrishnan RK; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1323-1326. PubMed ID: 36086651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
    Li S; Jiang S; Jiang S; Wu J; Xiong W; Diao S
    Comput Math Methods Med; 2017; 2017():9468503. PubMed ID: 29250135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust Heart Rate Monitoring for Quasi-Periodic Motions by Wrist-Type PPG Signals.
    He W; Ye Y; Lu L; Cheng Y; Li Y; Wang Z
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):636-648. PubMed ID: 31021779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel method for accurate estimation of HRV from smartwatch PPG signals.
    Bhowmik T; Dey J; Tiwari VN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust PPG-Based Mental Workload Assessment System Using Wearable Devices.
    Beh WK; Wu YH; Wu AY
    IEEE J Biomed Health Inform; 2023 May; 27(5):2323-2333. PubMed ID: 34962889
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fuzzy entropy based motion artifact detection and pulse rate estimation for fingertip photoplethysmography.
    Paradkar N; Chowdhury SR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():58-61. PubMed ID: 25569896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduction of Periodic Motion Artifacts in Photoplethysmography.
    Wijshoff RW; Mischi M; Aarts RM
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):196-207. PubMed ID: 27093308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular Contractions.
    Solosenko A; Petrenas A; Marozas V
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):662-9. PubMed ID: 26513800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise.
    Chung H; Lee H; Lee J
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1595-1606. PubMed ID: 30235152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method.
    Han H; Kim J
    Comput Biol Med; 2012 Apr; 42(4):387-93. PubMed ID: 22206810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motion artifact reduction in photoplethysmography using independent component analysis.
    Kim BS; Yoo SK
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):566-8. PubMed ID: 16532785
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices.
    Masinelli G; Dell'Agnola F; Valdés AA; Atienza D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables.
    Guo Z; Ding C; Hu X; Rudin C
    Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126
    [No Abstract]   [Full Text] [Related]  

  • 60. Respiratory rate estimation during triage of children in hospitals.
    Shah SA; Fleming S; Thompson M; Tarassenko L
    J Med Eng Technol; 2015; 39(8):514-24. PubMed ID: 26548638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.