BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 30184045)

  • 1. Deconvoluting essential gene signatures for cancer growth from genomic expression in compound-treated cells.
    Jung J; Kang Y; Paik H; Kwon M; Yu H; Lee D
    Bioinformatics; 2019 Apr; 35(7):1167-1173. PubMed ID: 30184045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells.
    Jung J
    Bioinformatics; 2021 May; 37(7):1008-1014. PubMed ID: 32886093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.
    Li W; Xu H; Xiao T; Cong L; Love MI; Zhang F; Irizarry RA; Liu JS; Brown M; Liu XS
    Genome Biol; 2014; 15(12):554. PubMed ID: 25476604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNet: a multi-omics approach to detecting clinically associated, combinatory genomic signatures.
    Jia P; Pei G; Zhao Z
    Bioinformatics; 2019 Dec; 35(24):5207-5215. PubMed ID: 31141125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.
    Glinsky GV
    Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational signature learning with supervised negative binomial non-negative matrix factorization.
    Lyu X; Garret J; Rätsch G; Lehmann KV
    Bioinformatics; 2020 Jul; 36(Suppl_1):i154-i160. PubMed ID: 32657388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SigMat: a classification scheme for gene signature matching.
    Xiao J; Blatti C; Sinha S
    Bioinformatics; 2018 Jul; 34(13):i547-i554. PubMed ID: 29950002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network analysis of gene essentiality in functional genomics experiments.
    Jiang P; Wang H; Li W; Zang C; Li B; Wong YJ; Meyer C; Liu JS; Aster JC; Liu XS
    Genome Biol; 2015 Oct; 16():239. PubMed ID: 26518695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the role of low-frequency mutated genes in breast cancer.
    Lusito E; Felice B; D'Ario G; Ogier A; Montani F; Di Fiore PP; Bianchi F
    Bioinformatics; 2019 Jan; 35(1):36-46. PubMed ID: 29961866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.
    Yu J; Silva J; Califano A
    Bioinformatics; 2016 Jan; 32(2):260-7. PubMed ID: 26415723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
    Iorio F; Behan FM; Gonçalves E; Bhosle SG; Chen E; Shepherd R; Beaver C; Ansari R; Pooley R; Wilkinson P; Harper S; Butler AP; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    BMC Genomics; 2018 Aug; 19(1):604. PubMed ID: 30103702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Figmop: a profile HMM to identify genes and bypass troublesome gene models in draft genomes.
    Curran DM; Gilleard JS; Wasmuth JD
    Bioinformatics; 2014 Nov; 30(22):3266-7. PubMed ID: 25115706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.