BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30184046)

  • 21. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved gap size estimation for scaffolding algorithms.
    Sahlin K; Street N; Lundeberg J; Arvestad L
    Bioinformatics; 2012 Sep; 28(17):2215-22. PubMed ID: 22923455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GraphBin: refined binning of metagenomic contigs using assembly graphs.
    Mallawaarachchi V; Wickramarachchi A; Lin Y
    Bioinformatics; 2020 Jun; 36(11):3307-3313. PubMed ID: 32167528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finishing bacterial genome assemblies with Mix.
    Soueidan H; Maurier F; Groppi A; Sirand-Pugnet P; Tardy F; Citti C; Dupuy V; Nikolski M
    BMC Bioinformatics; 2013; 14 Suppl 15(Suppl 15):S16. PubMed ID: 24564706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Misassembly detection using paired-end sequence reads and optical mapping data.
    Muggli MD; Puglisi SJ; Ronen R; Boucher C
    Bioinformatics; 2015 Jun; 31(12):i80-8. PubMed ID: 26072512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive review of scaffolding methods in genome assembly.
    Luo J; Wei Y; Lyu M; Wu Z; Liu X; Luo H; Yan C
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EPGA2: memory-efficient de novo assembler.
    Luo J; Wang J; Li W; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Dec; 31(24):3988-90. PubMed ID: 26315905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate detection of chimeric contigs via Bionano optical maps.
    Pan W; Lonardi S
    Bioinformatics; 2019 May; 35(10):1760-1762. PubMed ID: 30295726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HALC: High throughput algorithm for long read error correction.
    Bao E; Lan L
    BMC Bioinformatics; 2017 Apr; 18(1):204. PubMed ID: 28381259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEP_scaffolder: using (homologous) proteins to scaffold genomes.
    Zhu BH; Song YN; Xue W; Xu GC; Xiao J; Sun MY; Sun XW; Li JT
    Bioinformatics; 2016 Oct; 32(20):3193-3195. PubMed ID: 27334475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MeDuSa: a multi-draft based scaffolder.
    Bosi E; Donati B; Galardini M; Brunetti S; Sagot MF; Lió P; Crescenzi P; Fani R; Fondi M
    Bioinformatics; 2015 Aug; 31(15):2443-51. PubMed ID: 25810435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BESST--efficient scaffolding of large fragmented assemblies.
    Sahlin K; Vezzi F; Nystedt B; Lundeberg J; Arvestad L
    BMC Bioinformatics; 2014 Aug; 15(1):281. PubMed ID: 25128196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
    Chang YJ; Chen CC; Chen CL; Ho JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S28. PubMed ID: 23282094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.