These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30184331)

  • 1. Enhancing mechanical properties of an injectable two-solution acrylic bone cement using a difunctional crosslinker.
    Wiegand MJ; Faraci KL; Reed BE; Hasenwinkel JM
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):783-790. PubMed ID: 30184331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cross-linked PMMA beads on the mechanical behavior of self-curing acrylic cements.
    Vallo CI; Abraham GA; Cuadrado TR; San Román J
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):407-16. PubMed ID: 15264326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of acrylic bone cement using dynamic mechanical analysis.
    Yang JM; Li HM; Yang MC; Shih CH
    J Biomed Mater Res; 1999; 48(1):52-60. PubMed ID: 10029150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DMA analysis of the structure of crosslinked poly(methyl methacrylate)s.
    Barszczewska-Rybarek IM; Korytkowska-Wałach A; Kurcok M; Chladek G; Kasperski J
    Acta Bioeng Biomech; 2017; 19(1):47-53. PubMed ID: 28552918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and characterization of antimicrobial quaternary ammonium dendrimer in poly(methyl methcarylate) bone cement.
    Abid CK; Jain S; Jackeray R; Chattopadhyay S; Singh H
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):521-530. PubMed ID: 26584408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of in vitro biocompatibility of silicone and polymethyl methacrylate during the curing phase of polymerization.
    Song W; Seta J; Eichler MK; Arts JJ; Boszczyk BM; Markel DC; Gasbarrini A; Ren W
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2693-2699. PubMed ID: 29480542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of calcium phosphate/ethylene glycol dimethacrylate particles for dental applications.
    Natale LC; Rodrigues MC; Alania Y; Chiari MDS; Vilela HS; Vieira DN; Arana-Chavez V; Meier MM; Vichi FM; Braga RR
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):708-715. PubMed ID: 30091514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PMMA bone cement containing a quaternary amine comonomer with potential antibacterial properties.
    Deb S; Doiron R; Disilvio L; Punyani S; Singh H
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):130-9. PubMed ID: 17806110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological and mechanical properties of PMMA-based bioactive bone cements.
    Mousa WF; Kobayashi M; Shinzato S; Kamimura M; Neo M; Yoshihara S; Nakamura T
    Biomaterials; 2000 Nov; 21(21):2137-46. PubMed ID: 10985486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the quasi-static and viscoelastic properties of orthopaedic bone cement at the macro and nanoscale.
    Slane J; Vivanco JF; Squire M; Ploeg HL
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1461-1468. PubMed ID: 27087200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titania-containing bioactive bone cement for total hip arthroplasty in dogs.
    Imamura M; Goto K; Kawata T; Kataoka M; Fukuda C; Fujibayashi S; Matsuda S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1238-1245. PubMed ID: 30261123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone cement modeling for percutaneous vertebroplasty.
    Lepoutre N; Meylheuc L; Bara GI; Barbé L; Bayle B
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1504-1515. PubMed ID: 30267639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of injectable PMMA-strontium-substituted bioactive glass bone cement composites.
    Goñi I; Rodríguez R; García-Arnáez I; Parra J; Gurruchaga M
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1245-1257. PubMed ID: 28580716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.
    Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A
    J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.