BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30184433)

  • 21. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.
    Wang F; Zhou X; Liu W; Sun X; Chen C; Hudson LG; Jian Liu K
    Free Radic Biol Med; 2013 Aug; 61():249-56. PubMed ID: 23602911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NAD
    Croteau DL; Fang EF; Nilsen H; Bohr VA
    Cell Cycle; 2017 Mar; 16(6):491-492. PubMed ID: 28145802
    [No Abstract]   [Full Text] [Related]  

  • 23. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells.
    Ma J; Lim C; Sacher JR; Van Houten B; Qian W; Wipf P
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4828-4833. PubMed ID: 26159482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structurally unique PARP-1 inhibitors for the treatment of prostate cancer.
    Divan A; Sibi MP; Tulin A
    Pharmacol Res Perspect; 2020 Apr; 8(2):e00586. PubMed ID: 32342655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preclinical Efficacy of a PARP-1 Targeted Auger-Emitting Radionuclide in Prostate Cancer.
    Sreekumar S; Zhou D; Mpoy C; Schenk E; Scott J; Arbeit JM; Xu J; Rogers BE
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, synthesis and biological evaluation of matrine contains benzimidazole derivatives as dual TOPOI and PARP inhibitors for cancer therapy.
    Qiu G; Xie J; Li F; Han K; Long Q; Kowah JAH; Gao R; Wang L; Liu X
    Eur J Med Chem; 2024 Apr; 270():116348. PubMed ID: 38554475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease.
    Xun Z; Rivera-Sánchez S; Ayala-Peña S; Lim J; Budworth H; Skoda EM; Robbins PD; Niedernhofer LJ; Wipf P; McMurray CT
    Cell Rep; 2012 Nov; 2(5):1137-42. PubMed ID: 23122961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photo-Induced Oxidative Stress Impairs Mitochondrial Metabolism in Neurons and Astrocytes.
    Berezhnaya E; Neginskaya M; Uzdensky AB; Abramov AY
    Mol Neurobiol; 2018 Jan; 55(1):90-95. PubMed ID: 28840566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine.
    Nilov DK; Tararov VI; Kulikov AV; Zakharenko AL; Gushchina IV; Mikhailov SN; Lavrik OI; Švedas VK
    Acta Naturae; 2016; 8(2):108-15. PubMed ID: 27437145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal Concurrent PARP Inhibitor Sensitization Based on Radiation-Responsive Nanovesicles for Lung Cancer Chemoradiotherapy.
    Kang F; Niu M; Zhou Z; Zhang M; Xiong H; Zeng F; Wang J; Chen X
    Adv Healthc Mater; 2024 Apr; ():e2400908. PubMed ID: 38598819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converting cell death into senescence by PARP1 inhibition improves recovery from acute oxidative injury.
    Nehme J; Mesilmany L; Varela-Eirin M; Brandenburg S; Altulea A; Lin Y; Gaya da Costa M; Seelen M; Hillebrands JL; van Goor H; Saab R; Akl H; Prevarskaya N; Farfariello V; Demaria M
    Nat Aging; 2024 May; ():. PubMed ID: 38724734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of alcohol and PARP inhibition on RNA ribosomal engagement in cortical excitatory neurons.
    Krishnan HR; Vallerini GP; Gavin HE; Guizzetti M; Rizavi HS; Gavin DP; Sharma RP
    Front Mol Neurosci; 2023; 16():1125160. PubMed ID: 37113267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melatonin derivative 6a as a PARP-1 inhibitor for the treatment of Parkinson's disease.
    Ma QW; Han RT; Wu ZJ; Zhou JJ; Chen MT; Zhang XZ; Ma WZ; Feng N
    Front Pharmacol; 2024; 15():1363212. PubMed ID: 38476326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacogenomic analysis indicates potential of 1,5-isoquinolinediol as a universal anti-aging agent for different tissues.
    Park MS; Choi JS; Lee W; Yang YJ; Kim J; Lee GJ; Kim SS; Park SH; Kim SC; Choi JW
    Oncotarget; 2015 Jul; 6(19):17251-60. PubMed ID: 25980498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting PARP for Chemoradiosensitization: Opportunities, Challenges, and the Road Ahead.
    Willers H; Krause M; Faivre-Finn C; Chalmers AJ
    Int J Radiat Oncol Biol Phys; 2022 Feb; 112(2):265-270. PubMed ID: 34998527
    [No Abstract]   [Full Text] [Related]  

  • 36. Synergistic effect of poly (ADP-ribose) polymerase (PARP) inhibitor with chemotherapy on CXorf67-elevated posterior fossa group A ependymoma.
    Han J; Yu J; Yu M; Liu Y; Song X; Li H; Li L
    Chin Med J (Engl); 2024 Mar; ():. PubMed ID: 38479992
    [No Abstract]   [Full Text] [Related]  

  • 37. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair.
    Herrmann GK; Yin YW
    Biomolecules; 2023 Jul; 13(8):. PubMed ID: 37627260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Veliparib Prodrugs and Determination of Drug-Release-Dependent PARP-1 Inhibition.
    Borgini M; Wipf P
    ACS Med Chem Lett; 2023 May; 14(5):652-657. PubMed ID: 37197461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an NAD-dependent manner.
    Herrmann GK; Russell WK; Garg NJ; Yin YW
    J Biol Chem; 2021; 296():100309. PubMed ID: 33482196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents.
    Huang M; Myers CR; Wang Y; You M
    Cancer Prev Res (Phila); 2021 Mar; 14(3):285-306. PubMed ID: 33303695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.