BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30184437)

  • 1. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces.
    Han X; Liu J; Wang M; Upmanyu M; Wang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52524-52534. PubMed ID: 36373889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity.
    Hokmabad BV; Ghaemi S
    Sci Rep; 2017 Jan; 7():41448. PubMed ID: 28128296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Analysis of Air-Water Interface on Superhydrophobic Grooves under Fluctuating Water Pressure.
    Piao L; Park H
    Langmuir; 2015 Jul; 31(29):8022-32. PubMed ID: 26135133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.
    Zhao Y; Liu Y; Xu Q; Barahman M; Bartusik D; Greer A; Lyons AM
    J Phys Chem A; 2014 Nov; 118(45):10364-71. PubMed ID: 24885074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater sustainability of the "Cassie" state of wetting.
    Bobji MS; Kumar SV; Asthana A; Govardhan RN
    Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underwater Bionic Self-Healing Superhydrophobic Coating with the Synergetic Effect Of Hydrogen Bonds and Self-Formed Bubbles.
    Li H; Xin L; Gao J; Shao Y; Zhang Z; Ren L
    Small; 2024 May; 20(20):e2309012. PubMed ID: 38178643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Powered Plastron Preservation and One-Step Molding of Semiactive Superhydrophobic Surfaces.
    Xu M; Liu CT; Kim CJ
    Langmuir; 2020 Jul; 36(28):8193-8198. PubMed ID: 32589845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.
    Mayser MJ; Bohn HF; Reker M; Barthlott W
    Beilstein J Nanotechnol; 2014; 5():812-821. PubMed ID: 24991518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips.
    Hu H; Wen J; Bao L; Jia L; Song D; Song B; Pan G; Scaraggi M; Dini D; Xue Q; Zhou F
    Sci Adv; 2017 Sep; 3(9):e1603288. PubMed ID: 28879234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.