BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 30184472)

  • 21. Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data.
    Xu T; Du L; Zhou Y
    BMC Bioinformatics; 2008 Nov; 9():472. PubMed ID: 18986551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concepts of relative sample outlier (RSO) and weighted sample similarity (WSS) for improving performance of clustering genes: co-function and co-regulation.
    Bhattacharya A; Chowdhury N; De RK
    Int J Data Min Bioinform; 2015; 11(3):314-30. PubMed ID: 26333265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Missing value imputation for microRNA expression data by using a GO-based similarity measure.
    Yang Y; Xu Z; Song D
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26818962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-assisted recognition of cluster boundaries in gene expression data.
    Okada Y; Sahara T; Mitsubayashi H; Ohgiya S; Nagashima T
    Artif Intell Med; 2005; 35(1-2):171-83. PubMed ID: 16054350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new method to measure the semantic similarity of GO terms.
    Wang JZ; Du Z; Payattakool R; Yu PS; Chen CF
    Bioinformatics; 2007 May; 23(10):1274-81. PubMed ID: 17344234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A sensitive method for computing GO-based functional similarities among genes with 'shallow annotation'.
    Chen X; Yang R; Xu J; Ma H; Chen S; Bian X; Liu L
    Gene; 2012 Nov; 509(1):131-5. PubMed ID: 22903005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of proximity measures in clustering of cancer and miRNA datasets: proposal of an automated framework.
    Acharya S; Saha S
    Mol Biosyst; 2016 Oct; 12(11):3478-3501. PubMed ID: 27714008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fuzzy c-means clustering with prior biological knowledge.
    Tari L; Baral C; Kim S
    J Biomed Inform; 2009 Feb; 42(1):74-81. PubMed ID: 18595779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlating information contents of gene ontology terms to infer semantic similarity of gene products.
    Gan M
    Comput Math Methods Med; 2014; 2014():891842. PubMed ID: 24963342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis.
    Jaskowiak PA; Campello RJ; Costa IG
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):845-57. PubMed ID: 24334380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neural network-based similarity index for clustering DNA microarray data.
    Sawa T; Ohno-Machado L
    Comput Biol Med; 2003 Jan; 33(1):1-15. PubMed ID: 12485626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression data clustering using a multiobjective symmetry based clustering technique.
    Saha S; Ekbal A; Gupta K; Bandyopadhyay S
    Comput Biol Med; 2013 Nov; 43(11):1965-77. PubMed ID: 24209942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grouping miRNAs of similar functions via weighted information content of gene ontology.
    Lan C; Chen Q; Li J
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):507. PubMed ID: 28155659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clustering of gene expression data: performance and similarity analysis.
    Yin L; Huang CH; Ni J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S19. PubMed ID: 17217511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation between gene expression and GO semantic similarity.
    Sevilla JL; Segura V; Podhorski A; Guruceaga E; Mato JM; Martínez-Cruz LA; Corrales FJ; Rubio A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):330-8. PubMed ID: 17044170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing Dissimilarity Measures for Sample-Based Hierarchical Clustering of RNA Sequencing Data Using Plasmode Datasets.
    Reeb PD; Bramardi SJ; Steibel JP
    PLoS One; 2015; 10(7):e0132310. PubMed ID: 26162080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression data analysis using multiobjective clustering improved with SVM based ensemble.
    Mukhopadhyay A; Maulik U; Bandyopadhyay S
    In Silico Biol; 2011-2012; 11(1-2):19-27. PubMed ID: 22475749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. KMeans greedy search hybrid algorithm for biclustering gene expression data.
    Das S; Idicula SM
    Adv Exp Med Biol; 2010; 680():181-8. PubMed ID: 20865500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interspecies gene function prediction using semantic similarity.
    Yu G; Luo W; Fu G; Wang J
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):121. PubMed ID: 28155711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.