These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 30184497)
1. Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation. Marcomini I; Shimada K; Delgoshaie N; Yamamoto I; Seeber A; Cheblal A; Horigome C; Naumann U; Gasser SM Cell Rep; 2018 Sep; 24(10):2614-2628.e4. PubMed ID: 30184497 [TBL] [Abstract][Full Text] [Related]
2. Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends. Larcher MV; Pasquier E; MacDonald RS; Wellinger RJ PLoS Genet; 2016 Dec; 12(12):e1006479. PubMed ID: 27930670 [TBL] [Abstract][Full Text] [Related]
3. The MRX Complex Ensures NHEJ Fidelity through Multiple Pathways Including Xrs2-FHA-Dependent Tel1 Activation. Iwasaki D; Hayashihara K; Shima H; Higashide M; Terasawa M; Gasser SM; Shinohara M PLoS Genet; 2016 Mar; 12(3):e1005942. PubMed ID: 26990569 [TBL] [Abstract][Full Text] [Related]
4. Nej1 Interacts with Mre11 to Regulate Tethering and Dna2 Binding at DNA Double-Strand Breaks. Mojumdar A; Sorenson K; Hohl M; Toulouze M; Lees-Miller SP; Dubrana K; Petrini JHJ; Cobb JA Cell Rep; 2019 Aug; 28(6):1564-1573.e3. PubMed ID: 31390569 [TBL] [Abstract][Full Text] [Related]
5. The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks. Sorenson KS; Mahaney BL; Lees-Miller SP; Cobb JA J Biol Chem; 2017 Sep; 292(35):14576-14586. PubMed ID: 28679532 [TBL] [Abstract][Full Text] [Related]
6. Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis. Yun H; Kim K BMB Rep; 2019 Oct; 52(10):607-612. PubMed ID: 30940321 [TBL] [Abstract][Full Text] [Related]
7. Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks. Cassani C; Gobbini E; Wang W; Niu H; Clerici M; Sung P; Longhese MP PLoS Biol; 2016 Feb; 14(2):e1002387. PubMed ID: 26901759 [TBL] [Abstract][Full Text] [Related]
8. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Lewis LK; Resnick MA Mutat Res; 2000 Jun; 451(1-2):71-89. PubMed ID: 10915866 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional properties of Nej1 Mojumdar A; Adam N; Cobb JA DNA Repair (Amst); 2022 Jul; 115():103332. PubMed ID: 35537333 [TBL] [Abstract][Full Text] [Related]
10. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast. Wiest NE; Houghtaling S; Sanchez JC; Tomkinson AE; Osley MA Nucleic Acids Res; 2017 Jun; 45(10):5887-5900. PubMed ID: 28398510 [TBL] [Abstract][Full Text] [Related]
11. A novel role of the Dna2 translocase function in DNA break resection. Miller AS; Daley JM; Pham NT; Niu H; Xue X; Ira G; Sung P Genes Dev; 2017 Mar; 31(5):503-510. PubMed ID: 28336516 [TBL] [Abstract][Full Text] [Related]
12. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Lee K; Lee SE Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964 [TBL] [Abstract][Full Text] [Related]
13. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Galli A; Chan CY; Parfenova L; Cervelli T; Schiestl RH Mutagenesis; 2015 Nov; 30(6):841-9. PubMed ID: 26122113 [TBL] [Abstract][Full Text] [Related]
14. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Dewar JM; Lydall D Chromosoma; 2012 Apr; 121(2):117-30. PubMed ID: 22203190 [TBL] [Abstract][Full Text] [Related]
15. Sequence and chromatin features guide DNA double-strand break resection initiation. Gnügge R; Reginato G; Cejka P; Symington LS Mol Cell; 2023 Apr; 83(8):1237-1250.e15. PubMed ID: 36917982 [TBL] [Abstract][Full Text] [Related]
16. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection. Matsuzaki K; Terasawa M; Iwasaki D; Higashide M; Shinohara M Genes Cells; 2012 Jun; 17(6):473-93. PubMed ID: 22563681 [TBL] [Abstract][Full Text] [Related]
17. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Wu D; Topper LM; Wilson TE Genetics; 2008 Mar; 178(3):1237-49. PubMed ID: 18245831 [TBL] [Abstract][Full Text] [Related]
18. Changes in DNA double-strand break repair during aging correlate with an increase in genomic mutations. Mojumdar A; Mair N; Adam N; Cobb JA J Mol Biol; 2022 Oct; 434(20):167798. PubMed ID: 35998703 [TBL] [Abstract][Full Text] [Related]
19. Double-strand break end resection and repair pathway choice. Symington LS; Gautier J Annu Rev Genet; 2011; 45():247-71. PubMed ID: 21910633 [TBL] [Abstract][Full Text] [Related]
20. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions. Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]