These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 30184498)
1. ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Mutreja K; Krietsch J; Hess J; Ursich S; Berti M; Roessler FK; Zellweger R; Patra M; Gasser G; Lopes M Cell Rep; 2018 Sep; 24(10):2629-2642.e5. PubMed ID: 30184498 [TBL] [Abstract][Full Text] [Related]
2. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Rickman KA; Noonan RJ; Lach FP; Sridhar S; Wang AT; Abhyankar A; Huang A; Kelly M; Auerbach AD; Smogorzewska A Genes Dev; 2020 Jun; 34(11-12):832-846. PubMed ID: 32354836 [TBL] [Abstract][Full Text] [Related]
3. RADX prevents genome instability by confining replication fork reversal to stalled forks. Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305 [TBL] [Abstract][Full Text] [Related]
4. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. Zellweger R; Dalcher D; Mutreja K; Berti M; Schmid JA; Herrador R; Vindigni A; Lopes M J Cell Biol; 2015 Mar; 208(5):563-79. PubMed ID: 25733714 [TBL] [Abstract][Full Text] [Related]
5. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Ahuja AK; Jodkowska K; Teloni F; Bizard AH; Zellweger R; Herrador R; Ortega S; Hickson ID; Altmeyer M; Mendez J; Lopes M Nat Commun; 2016 Feb; 7():10660. PubMed ID: 26876348 [TBL] [Abstract][Full Text] [Related]
6. Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Amunugama R; Willcox S; Wu RA; Abdullah UB; El-Sagheer AH; Brown T; McHugh PJ; Griffith JD; Walter JC Cell Rep; 2018 Jun; 23(12):3419-3428. PubMed ID: 29924986 [TBL] [Abstract][Full Text] [Related]
7. Detecting recruitment of DNA damage response factors through the eChIP approach. Wang Y; Li L Methods Mol Biol; 2011; 782():245-55. PubMed ID: 21870297 [TBL] [Abstract][Full Text] [Related]
9. High levels of RAD51 perturb DNA replication elongation and cause unscheduled origin firing due to impaired CHK1 activation. Parplys AC; Seelbach JI; Becker S; Behr M; Wrona A; Jend C; Mansour WY; Joosse SA; Stuerzbecher HW; Pospiech H; Petersen C; Dikomey E; Borgmann K Cell Cycle; 2015; 14(19):3190-202. PubMed ID: 26317153 [TBL] [Abstract][Full Text] [Related]
10. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Berti M; Teloni F; Mijic S; Ursich S; Fuchs J; Palumbieri MD; Krietsch J; Schmid JA; Garcin EB; Gon S; Modesti M; Altmeyer M; Lopes M Nat Commun; 2020 Jul; 11(1):3531. PubMed ID: 32669601 [TBL] [Abstract][Full Text] [Related]
11. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Vujanovic M; Krietsch J; Raso MC; Terraneo N; Zellweger R; Schmid JA; Taglialatela A; Huang JW; Holland CL; Zwicky K; Herrador R; Jacobs H; Cortez D; Ciccia A; Penengo L; Lopes M Mol Cell; 2017 Sep; 67(5):882-890.e5. PubMed ID: 28886337 [TBL] [Abstract][Full Text] [Related]
12. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668 [TBL] [Abstract][Full Text] [Related]
14. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Park SH; Kang N; Song E; Wie M; Lee EA; Hwang S; Lee D; Ra JS; Park IB; Park J; Kang S; Park JH; Hohng S; Lee KY; Myung K Nat Commun; 2019 Dec; 10(1):5718. PubMed ID: 31844045 [TBL] [Abstract][Full Text] [Related]
17. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Huang J; Liu S; Bellani MA; Thazhathveetil AK; Ling C; de Winter JP; Wang Y; Wang W; Seidman MM Mol Cell; 2013 Nov; 52(3):434-46. PubMed ID: 24207054 [TBL] [Abstract][Full Text] [Related]
18. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Bai G; Kermi C; Stoy H; Schiltz CJ; Bacal J; Zaino AM; Hadden MK; Eichman BF; Lopes M; Cimprich KA Mol Cell; 2020 Jun; 78(6):1237-1251.e7. PubMed ID: 32442397 [TBL] [Abstract][Full Text] [Related]
19. Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops. Chappidi N; Nascakova Z; Boleslavska B; Zellweger R; Isik E; Andrs M; Menon S; Dobrovolna J; Balbo Pogliano C; Matos J; Porro A; Lopes M; Janscak P Mol Cell; 2020 Feb; 77(3):528-541.e8. PubMed ID: 31759821 [TBL] [Abstract][Full Text] [Related]