These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30184823)
1. Synthesis, characterization and in vitro analysis of α-Fe Deka S; Saxena V; Hasan A; Chandra P; Pandey LM Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():932-941. PubMed ID: 30184823 [TBL] [Abstract][Full Text] [Related]
3. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
4. Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method. Guganathan L; Rajeevgandhi C; Sathiyamurthy K; Thirupathi K; Santhamoorthy M; Chinnasamy E; Raorane CJ; Raj V; Kim SC; Anand P Gels; 2022 Oct; 8(11):. PubMed ID: 36354596 [TBL] [Abstract][Full Text] [Related]
5. Stimuli-responsive poly(N-isopropyl acrylamide)-co-tyrosine@gadolinium: Iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment. Roy E; Patra S; Madhuri R; Sharma PK Colloids Surf B Biointerfaces; 2016 Jun; 142():248-258. PubMed ID: 26962761 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Liu XL; Ng CT; Chandrasekharan P; Yang HT; Zhao LY; Peng E; Lv YB; Xiao W; Fang J; Yi JB; Zhang H; Chuang KH; Bay BH; Ding J; Fan HM Adv Healthc Mater; 2016 Aug; 5(16):2092-104. PubMed ID: 27297640 [TBL] [Abstract][Full Text] [Related]
7. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Kneepkens E; Heijman E; Keupp J; Weiss S; Nicolay K; Grüll H Invest Radiol; 2017 Oct; 52(10):620-630. PubMed ID: 28598900 [TBL] [Abstract][Full Text] [Related]
8. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
9. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
10. Magnetic and hydrogel composite materials for hyperthermia applications. Lao LL; Ramanujan RV J Mater Sci Mater Med; 2004 Oct; 15(10):1061-4. PubMed ID: 15516865 [TBL] [Abstract][Full Text] [Related]
11. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and in vitro study of magnetic biphasic calcium sulfate-bioactive glass. Goh YF; Akram M; Alshemary AZ; Hussain R Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():29-35. PubMed ID: 26042687 [TBL] [Abstract][Full Text] [Related]
13. Maghemite (γ-Fe Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088 [TBL] [Abstract][Full Text] [Related]
14. Magnetic mesoporous silica spheres for hyperthermia therapy. Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238 [TBL] [Abstract][Full Text] [Related]
15. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. Wang ZY; Song J; Zhang DS World J Gastroenterol; 2009 Jun; 15(24):2995-3002. PubMed ID: 19554652 [TBL] [Abstract][Full Text] [Related]
17. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
18. Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis. Fopase R; Saxena V; Seal P; Borah JP; Pandey LM Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111163. PubMed ID: 32806279 [TBL] [Abstract][Full Text] [Related]
19. Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl₂-NaNO₃-NaOH aqueous system. Li Z; Kawashita M; Araki N; Mitsumori M; Hiraoka M; Doi M J Biomater Appl; 2011 Mar; 25(7):643-61. PubMed ID: 20207773 [TBL] [Abstract][Full Text] [Related]