These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30184823)
21. High-efficiency and safe sulfur-doped iron oxides for magnetic resonance imaging-guided photothermal/magnetic hyperthermia therapy. Guan G; Li B; Zhang W; Cui Z; He SA; Zou R; Lu X; Hu J Dalton Trans; 2020 May; 49(17):5493-5502. PubMed ID: 32266911 [TBL] [Abstract][Full Text] [Related]
22. Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. Mitxelena-Iribarren O; Campisi J; Martínez de Apellániz I; Lizarbe-Sancha S; Arana S; Zhukova V; Mujika M; Zhukov A Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110261. PubMed ID: 31753330 [TBL] [Abstract][Full Text] [Related]
23. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents. Yadavalli T; Raja P; Ramaswamy S; Chandrasekharan G; Chennakesavulu R J Nanosci Nanotechnol; 2017 Feb; 17(2):878-83. PubMed ID: 29668222 [TBL] [Abstract][Full Text] [Related]
24. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field. Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250 [TBL] [Abstract][Full Text] [Related]
25. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Bhardwaj A; Parekh K; Jain N Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662 [TBL] [Abstract][Full Text] [Related]
26. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050 [TBL] [Abstract][Full Text] [Related]
27. Fullerene C60 functionalized γ-Fe2O3 magnetic nanoparticle: Synthesis, characterization, and biomedical applications. Kılınç E Artif Cells Nanomed Biotechnol; 2016; 44(1):298-304. PubMed ID: 25118710 [TBL] [Abstract][Full Text] [Related]
28. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Altanerova U; Babincova M; Babinec P; Benejova K; Jakubechova J; Altanerova V; Zduriencikova M; Repiska V; Altaner C Int J Nanomedicine; 2017; 12():7923-7936. PubMed ID: 29138559 [TBL] [Abstract][Full Text] [Related]
30. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814 [TBL] [Abstract][Full Text] [Related]
32. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells. Makridis A; Tziomaki M; Topouridou K; Yavropoulou MP; Yovos JG; Kalogirou O; Samaras T; Angelakeris M Int J Hyperthermia; 2016 Nov; 32(7):778-85. PubMed ID: 27442884 [TBL] [Abstract][Full Text] [Related]
33. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Pradhan P; Giri J; Samanta G; Sarma HD; Mishra KP; Bellare J; Banerjee R; Bahadur D J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):12-22. PubMed ID: 16924619 [TBL] [Abstract][Full Text] [Related]
34. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells. Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525 [TBL] [Abstract][Full Text] [Related]
35. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements. Cano ME; Barrera A; Estrada JC; Hernandez A; Cordova T Rev Sci Instrum; 2011 Nov; 82(11):114904. PubMed ID: 22129001 [TBL] [Abstract][Full Text] [Related]
36. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463 [TBL] [Abstract][Full Text] [Related]
37. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. Melnikov OV; Gorbenko OY; Markelova MN; Kaul AR; Atsarkin VA; Demidov VV; Soto C; Roy EJ; Odintsov BM J Biomed Mater Res A; 2009 Dec; 91(4):1048-55. PubMed ID: 19127514 [TBL] [Abstract][Full Text] [Related]
38. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. Gu Y; Piñol R; Moreno-Loshuertos R; Brites CDS; Zeler J; Martínez A; Maurin-Pasturel G; Fernández-Silva P; Marco-Brualla J; Téllez P; Cases R; Belsué RN; Bonvin D; Carlos LD; Millán A ACS Nano; 2023 Apr; 17(7):6822-6832. PubMed ID: 36940429 [TBL] [Abstract][Full Text] [Related]
40. Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Singh J; Srivastava M; Dutta J; Dutta PK Int J Biol Macromol; 2011 Jan; 48(1):170-6. PubMed ID: 21056054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]