These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30184888)

  • 1. Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks.
    Man Z; Bai Z; Zhang S; Li X; Li J; Ge X; Zhang Y; Fu S
    Opt Express; 2018 Sep; 26(18):23935-23944. PubMed ID: 30184888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.
    Man Z; Bai Z; Zhang S; Li J; Li X; Ge X; Zhang Y; Fu S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):1014-1020. PubMed ID: 29877346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing field energy flow simulation of an azimuthally polarized Lorentz-Gaussian beam modulated by a concentric vortex phase mask.
    Zhou Z; Li J; Feng G; Li S; Lu C
    Appl Opt; 2023 Dec; 62(34):9125-9132. PubMed ID: 38108750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poynting vector profile of a tightly focused radially polarized beam in the presence of primary aberrations.
    Gaffar M; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):660-8. PubMed ID: 26366777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays.
    Wang X; Zhu B; Dong Y; Wang S; Zhu Z; Bo F; Li X
    Opt Express; 2017 Oct; 25(22):26844-26852. PubMed ID: 29092169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles.
    Jiao X; Liu S; Wang Q; Gan X; Li P; Zhao J
    Opt Lett; 2012 Mar; 37(6):1041-3. PubMed ID: 22446217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge.
    Xu HF; Zhang R; Sheng ZQ; Qu J
    Opt Express; 2019 Aug; 27(17):23959-23969. PubMed ID: 31510292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams.
    Xu HF; Zhou Y; Wu HW; Chen HJ; Sheng ZQ; Qu J
    Opt Express; 2018 Aug; 26(16):20076-20088. PubMed ID: 30119323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam.
    Fan C; Liu Y; Wang X; Chen Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):903-907. PubMed ID: 29877333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paraxial and tightly focused behaviour of the double ring perfect optical vortex.
    Rickenstorff C; Gómez-Pavón LDC; Sosa-Sánchez CT; Silva-Ortigoza G
    Opt Express; 2020 Sep; 28(19):28713-28726. PubMed ID: 32988136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of achromatic, uniform-phase, radially polarized beams.
    Wakayama T; Rodríguez-Herrera OG; Tyo JS; Otani Y; Yonemura M; Yoshizawa T
    Opt Express; 2014 Feb; 22(3):3306-15. PubMed ID: 24663621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.
    Dai L; Li JX; Zang WP; Tian JG
    Opt Express; 2011 May; 19(10):9303-8. PubMed ID: 21643185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis on the longitudinal field strength formed by tightly-focused radially-polarized femtosecond petawatt laser pulse.
    Jeong TM; Bulanov S; Weber S; Korn G
    Opt Express; 2018 Dec; 26(25):33091-33107. PubMed ID: 30645466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD.
    Jia B; Gan X; Gu M
    Opt Express; 2005 Sep; 13(18):6821-7. PubMed ID: 19498699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental observation of the aberration effects on a radially polarized beam.
    Gaffar M; Kalita R; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2016 Nov; 33(11):2178-2187. PubMed ID: 27857434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of electric field enhancement between metal blocks at the focused field generated by a radially polarized beam.
    Kitamura K; Xu TT; Noda S
    Opt Express; 2013 Dec; 21(26):32217-24. PubMed ID: 24514816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization evolution of radially polarized partially coherent vortex fields: role of Gouy phase of Laguerre-Gauss beams.
    Martínez-Herrero R; Prado F
    Opt Express; 2015 Feb; 23(4):5043-51. PubMed ID: 25836539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipole theory for tight focusing of polarized light, including radially polarized and other special cases.
    Hoang TX; Chen X; Sheppard CJ
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jan; 29(1):32-43. PubMed ID: 22218349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled negative energy flow in the focus of a radial polarized optical beam.
    Li H; Wang C; Tang M; Li X
    Opt Express; 2020 Jun; 28(13):18607-18615. PubMed ID: 32672158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.
    Guo L; Chen Y; Liu X; Liu L; Cai Y
    Opt Express; 2016 Jun; 24(13):13714-28. PubMed ID: 27410535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.