These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30184938)

  • 1. Fabrication of three-dimensionally ordered macroporous TiO
    Song X; Ma Z; Deng J; Li X; Wang L; Yan Y; Dong X; Wang Y; Xia C
    Opt Express; 2018 Sep; 26(18):A855-A864. PubMed ID: 30184938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of Mn
    Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC
    R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light photocatalysis via 3D-ordered macroporous TiO2 films sensitized with CdS quantum dots.
    Xie H; Zeng T; Jin S; Li Y; Wang X; Sui X; Zhao X
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1461-6. PubMed ID: 23646661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance.
    Chang JY; Li CH; Chiang YH; Chen CH; Li PN
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18878-90. PubMed ID: 27405921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells.
    Subramaniam MR; Kumaresan D
    Chemphyschem; 2015 Aug; 16(12):2543-8. PubMed ID: 26212770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.
    Coughlin KM; Nevins JS; Watson DF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8649-54. PubMed ID: 23937323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).
    Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G
    Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO
    Huang KY; Luo YH; Cheng HM; Tang J; Huang JH
    Nanoscale Res Lett; 2019 Jan; 14(1):18. PubMed ID: 30635791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Size Effect of TiO
    Li Z; Yu L
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells.
    Jin BB; Kong SY; Zhang GQ; Chen XQ; Ni HS; Zhang F; Wang DJ; Zeng JH
    J Colloid Interface Sci; 2021 Mar; 586():640-646. PubMed ID: 33183753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocurrent Enhancement of CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.
    Yang J; Lee J; Lee J; Park T; Yi W
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1347-1350. PubMed ID: 29448589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance.
    Rao SS; Durga IK; Gopi CV; Venkata Tulasivarma C; Kim SK; Kim HJ
    Dalton Trans; 2015 Jul; 44(28):12852-62. PubMed ID: 26102365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells.
    Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W
    Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic Synthesis of CdS(core)-CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO
    Kitazono K; Akashi R; Fujiwara K; Akita A; Naya SI; Fujishima M; Tada H
    Chemphyschem; 2017 Oct; 18(20):2840-2845. PubMed ID: 28833927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical macroporous Zn(2)SnO(4)-ZnO nanorod composite photoelectrodes for efficient CdS/CdSe quantum dot co-sensitized solar cells.
    Li LB; Wang YF; Rao HS; Wu WQ; Li KN; Su CY; Kuang DB
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11865-71. PubMed ID: 24191709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.