These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30184961)

  • 41. Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection.
    Kong HJ; Du Beak H; Lee DW; Lee SK
    Opt Lett; 2005 Dec; 30(24):3401-3. PubMed ID: 16389845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Forward and backward stimulated Brillouin scattering of crossed laser beams.
    McKinstrie CJ; Startsev EA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5978-86. PubMed ID: 11970502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth.
    Preussler S; Wiatrek A; Jamshidi K; Schneider T
    Appl Opt; 2011 Aug; 50(22):4252-6. PubMed ID: 21833096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of stimulated Brillouin scattering in a few-mode fiber.
    Song KY; Kim YH
    Opt Lett; 2013 Nov; 38(22):4841-4. PubMed ID: 24322146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-efficiency stimulated Brillouin scattering of KrF laser radiation in SF(6).
    Tomov IV; Fedosejevs R; McKen DC
    Opt Lett; 1984 Sep; 9(9):405-7. PubMed ID: 19721614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier.
    Lee KH; Lee K; Kim Y; Cha YH; Lim G; Park H; Cho H; Jeong DY
    Appl Opt; 2015 Jan; 54(2):189-94. PubMed ID: 25967616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique.
    Mizuno Y; Kishi M; Hotate K; Ishigure T; Nakamura K
    Opt Lett; 2011 Jun; 36(12):2378-80. PubMed ID: 21686026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photon-phonon Interaction in a Microfiber Induced by Optical and Electrostrictive Forces.
    Shi YC; Luo W; Xu F; Lu YQ
    Sci Rep; 2017 Feb; 7():41849. PubMed ID: 28145514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser.
    White JO; Vasilyev A; Cahill JP; Satyan N; Okusaga O; Rakuljic G; Mungan CE; Yariv A
    Opt Express; 2012 Jul; 20(14):15872-81. PubMed ID: 22772277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers.
    Wang X; Zhou P; Wang X; Xiao H; Liu Z
    Opt Lett; 2015 Jun; 40(11):2584-7. PubMed ID: 26030563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Giant enhancement of stimulated Brillouin scattering with engineered phoxonic crystal waveguides.
    Yu Z; Sun X
    Opt Express; 2018 Jan; 26(2):1255-1267. PubMed ID: 29402001
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis.
    Li A; Hu Q; Shieh W
    Opt Express; 2013 Dec; 21(26):31894-906. PubMed ID: 24514785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror.
    Yoshida H; Kmetik V; Fujita H; Nakatsuka M; Yamanaka T; Yoshida K
    Appl Opt; 1997 Jun; 36(16):3739-44. PubMed ID: 18253400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results.
    Lamaignère L; Gaudfrin K; Donval T; Natoli J; Sajer JM; Penninckx D; Courchinoux R; Diaz R
    Opt Express; 2018 Apr; 26(9):11744-11755. PubMed ID: 29716093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering.
    Long X; Zou W; Chen J
    Opt Express; 2017 Feb; 25(3):2206-2214. PubMed ID: 29519068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss.
    Wolff C; Gutsche P; Steel MJ; Eggleton BJ; Poulton CG
    Opt Express; 2015 Oct; 23(20):26628-38. PubMed ID: 26480175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering.
    Peng H; Xu Y; Peng X; Zhu X; Guo R; Chen F; Du H; Chen Y; Zhang C; Zhu L; Hu W; Chen Z
    Opt Express; 2017 May; 25(9):10287-10305. PubMed ID: 28468402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding.
    London Y; Antman Y; Cohen R; Kimelfeld N; Levanon N; Zadok A
    Opt Express; 2014 Nov; 22(22):27144-58. PubMed ID: 25401865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Competition between stimulated Raman and Brillouin scattering processes in CF₄ gas.
    Ben Yehud L; Belker D; Ravnitzki G; Ishaaya AA
    Opt Lett; 2014 Feb; 39(4):1026-9. PubMed ID: 24562269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-pump push-pull polarization control using stimulated Brillouin scattering.
    Shmilovitch Z; Primerov N; Zadok A; Eyal A; Chin S; Thevenaz L; Tur M
    Opt Express; 2011 Dec; 19(27):25873-80. PubMed ID: 22274175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.