These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30184985)
1. Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom. Wang GY; Li T; Ai Q; Deng FG Opt Express; 2018 Sep; 26(18):23333-23346. PubMed ID: 30184985 [TBL] [Abstract][Full Text] [Related]
3. Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Cao C; Zhang L; Han YH; Yin PP; Fan L; Duan YW; Zhang R Opt Express; 2020 Feb; 28(3):2857-2872. PubMed ID: 32121965 [TBL] [Abstract][Full Text] [Related]
4. Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Han YH; Cao C; Fan L; Zhang R Opt Express; 2021 Jun; 29(13):20045-20062. PubMed ID: 34266103 [TBL] [Abstract][Full Text] [Related]
5. Quantum hyperentanglement and its applications in quantum information processing. Deng FG; Ren BC; Li XH Sci Bull (Beijing); 2017 Jan; 62(1):46-68. PubMed ID: 36718070 [TBL] [Abstract][Full Text] [Related]
7. Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-Q cavities. Du FF; Shi ZR Opt Express; 2019 Jun; 27(13):17493-17506. PubMed ID: 31252708 [TBL] [Abstract][Full Text] [Related]
8. Robust universal photonic quantum gates operable with imperfect processes involved in diamond nitrogen-vacancy centers inside low-Q single-sided cavities. Li M; Zhang M Opt Express; 2018 Dec; 26(25):33129-33141. PubMed ID: 30645469 [TBL] [Abstract][Full Text] [Related]
9. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity. Luo MX; Li HR; Lai H Sci Rep; 2016 Jul; 6():29939. PubMed ID: 27424767 [TBL] [Abstract][Full Text] [Related]
10. Resonantly driven CNOT gate for electron spins. Zajac DM; Sigillito AJ; Russ M; Borjans F; Taylor JM; Burkard G; Petta JR Science; 2018 Jan; 359(6374):439-442. PubMed ID: 29217586 [TBL] [Abstract][Full Text] [Related]
11. Hyperparallel transistor, router and dynamic random access memory with unity fidelities. Liu JZ; Chen NY; Liu WQ; Wei HR; Hua M Opt Express; 2019 Jul; 27(15):21380-21394. PubMed ID: 31510217 [TBL] [Abstract][Full Text] [Related]
12. Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link. Du FF; Liu YT; Shi ZR; Liang YX; Tang J; Liu J Opt Express; 2019 Sep; 27(19):27046-27061. PubMed ID: 31674573 [TBL] [Abstract][Full Text] [Related]
13. Quantum Computation Based on Photons with Three Degrees of Freedom. Luo MX; Li HR; Lai H; Wang X Sci Rep; 2016 May; 6():25977. PubMed ID: 27174302 [TBL] [Abstract][Full Text] [Related]
14. Qudit-based high-dimensional controlled-not gate. Du FF; Ren XM; Ma M; Fan G Opt Lett; 2024 Mar; 49(5):1229-1232. PubMed ID: 38426980 [TBL] [Abstract][Full Text] [Related]
15. Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Luo MX; Wang X Sci Rep; 2014 Jul; 4():5732. PubMed ID: 25030424 [TBL] [Abstract][Full Text] [Related]
16. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Wei HR; Deng FG Opt Express; 2013 Jul; 21(15):17671-85. PubMed ID: 23938640 [TBL] [Abstract][Full Text] [Related]
17. Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Wang GY; Ai Q; Ren BC; Li T; Deng FG Opt Express; 2016 Dec; 24(25):28444-28458. PubMed ID: 27958494 [TBL] [Abstract][Full Text] [Related]
18. High-speed linear optics quantum computing using active feed-forward. Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057 [TBL] [Abstract][Full Text] [Related]