These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Sonoiki E; Ng CL; Lee MC; Guo D; Zhang YK; Zhou Y; Alley MR; Ahyong V; Sanz LM; Lafuente-Monasterio MJ; Dong C; Schupp PG; Gut J; Legac J; Cooper RA; Gamo FJ; DeRisi J; Freund YR; Fidock DA; Rosenthal PJ Nat Commun; 2017 Mar; 8():14574. PubMed ID: 28262680 [TBL] [Abstract][Full Text] [Related]
4. Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. Giordani F; Paape D; Vincent IM; Pountain AW; Fernández-Cortés F; Rico E; Zhang N; Morrison LJ; Freund Y; Witty MJ; Peter R; Edwards DY; Wilkes JM; van der Hooft JJJ; Regnault C; Read KD; Horn D; Field MC; Barrett MP PLoS Pathog; 2020 Nov; 16(11):e1008932. PubMed ID: 33141865 [TBL] [Abstract][Full Text] [Related]
5. Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3. Tao Y; Budhipramono A; Huang J; Fang M; Xie S; Kim J; Khivansara V; Dominski Z; Tong L; De Brabander JK; Nijhawan D Cell Chem Biol; 2024 Jan; 31(1):139-149.e14. PubMed ID: 37967558 [TBL] [Abstract][Full Text] [Related]
6. Clinically relevant benzoxaboroles inhibit mRNA processing in Trypanosoma brucei. Waithaka A; Clayton C BMC Res Notes; 2022 Dec; 15(1):371. PubMed ID: 36528767 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. Steketee PC; Giordani F; Vincent IM; Crouch K; Achcar F; Dickens NJ; Morrison LJ; MacLeod A; Barrett MP PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009939. PubMed ID: 34752454 [TBL] [Abstract][Full Text] [Related]
8. High-throughput decoding of drug targets and drug resistance mechanisms in African trypanosomes. Horn D Parasitology; 2014 Jan; 141(1):77-82. PubMed ID: 23561654 [TBL] [Abstract][Full Text] [Related]
9. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. Zhang N; Zoltner M; Leung KF; Scullion P; Hutchinson S; Del Pino RC; Vincent IM; Zhang YK; Freund YR; Alley MRK; Jacobs RT; Read KD; Barrett MP; Horn D; Field MC PLoS Pathog; 2018 Feb; 14(2):e1006850. PubMed ID: 29425238 [TBL] [Abstract][Full Text] [Related]
10. Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Matovu E; Seebeck T; Enyaru JC; Kaminsky R Microbes Infect; 2001 Jul; 3(9):763-70. PubMed ID: 11489425 [TBL] [Abstract][Full Text] [Related]
11. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. Steketee PC; Vincent IM; Achcar F; Giordani F; Kim DH; Creek DJ; Freund Y; Jacobs R; Rattigan K; Horn D; Field MC; MacLeod A; Barrett MP PLoS Negl Trop Dis; 2018 May; 12(5):e0006450. PubMed ID: 29758036 [TBL] [Abstract][Full Text] [Related]
12. Newly identified antibacterial compounds are topoisomerase poisons in African trypanosomes. Tang SC; Shapiro TA Antimicrob Agents Chemother; 2010 Feb; 54(2):620-6. PubMed ID: 20008775 [TBL] [Abstract][Full Text] [Related]
13. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. Gilbert IH J Med Chem; 2013 Oct; 56(20):7719-26. PubMed ID: 24015767 [TBL] [Abstract][Full Text] [Related]
14. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome. Schulz D; Mugnier MR; Paulsen EM; Kim HS; Chung CW; Tough DF; Rioja I; Prinjha RK; Papavasiliou FN; Debler EW PLoS Biol; 2015 Dec; 13(12):e1002316. PubMed ID: 26646171 [TBL] [Abstract][Full Text] [Related]
15. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Wilkinson SR; Bot C; Kelly JM; Hall BS Curr Top Med Chem; 2011; 11(16):2072-84. PubMed ID: 21619510 [TBL] [Abstract][Full Text] [Related]
16. Investigating mammalian tyrosine phosphatase inhibitors as potential 'piggyback' leads to target Trypanosoma brucei transmission. Ruberto I; Szoor B; Clark R; Matthews KR Chem Biol Drug Des; 2013 Feb; 81(2):291-301. PubMed ID: 23066974 [TBL] [Abstract][Full Text] [Related]
17. CSR1 induces cell death through inactivation of CPSF3. Zhu ZH; Yu YP; Shi YK; Nelson JB; Luo JH Oncogene; 2009 Jan; 28(1):41-51. PubMed ID: 18806823 [TBL] [Abstract][Full Text] [Related]
18. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Liu H; Moore CL Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430 [TBL] [Abstract][Full Text] [Related]
19. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Alsford S; Eckert S; Baker N; Glover L; Sanchez-Flores A; Leung KF; Turner DJ; Field MC; Berriman M; Horn D Nature; 2012 Jan; 482(7384):232-6. PubMed ID: 22278056 [TBL] [Abstract][Full Text] [Related]
20. Pilot-Scale Screening of Clinically Approved Drugs to Identify Uridine Insertion/Deletion RNA Editing Inhibitors in Rostamighadi M; Kamelshahroudi A; Pitsitikas V; Jacobson KA; Salavati R ACS Infect Dis; 2024 Sep; 10(9):3289-3303. PubMed ID: 39118542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]