BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30185555)

  • 1. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.
    Wall RJ; Rico E; Lukac I; Zuccotto F; Elg S; Gilbert IH; Freund Y; Alley MRK; Field MC; Wyllie S; Horn D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9616-9621. PubMed ID: 30185555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing.
    Begolo D; Vincent IM; Giordani F; Pöhner I; Witty MJ; Rowan TG; Bengaly Z; Gillingwater K; Freund Y; Wade RC; Barrett MP; Clayton C
    PLoS Pathog; 2018 Sep; 14(9):e1007315. PubMed ID: 30252911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue.
    Sonoiki E; Ng CL; Lee MC; Guo D; Zhang YK; Zhou Y; Alley MR; Ahyong V; Sanz LM; Lafuente-Monasterio MJ; Dong C; Schupp PG; Gut J; Legac J; Cooper RA; Gamo FJ; DeRisi J; Freund YR; Fidock DA; Rosenthal PJ
    Nat Commun; 2017 Mar; 8():14574. PubMed ID: 28262680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs.
    Giordani F; Paape D; Vincent IM; Pountain AW; Fernández-Cortés F; Rico E; Zhang N; Morrison LJ; Freund Y; Witty MJ; Peter R; Edwards DY; Wilkes JM; van der Hooft JJJ; Regnault C; Read KD; Horn D; Field MC; Barrett MP
    PLoS Pathog; 2020 Nov; 16(11):e1008932. PubMed ID: 33141865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3.
    Tao Y; Budhipramono A; Huang J; Fang M; Xie S; Kim J; Khivansara V; Dominski Z; Tong L; De Brabander JK; Nijhawan D
    Cell Chem Biol; 2024 Jan; 31(1):139-149.e14. PubMed ID: 37967558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinically relevant benzoxaboroles inhibit mRNA processing in Trypanosoma brucei.
    Waithaka A; Clayton C
    BMC Res Notes; 2022 Dec; 15(1):371. PubMed ID: 36528767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole.
    Steketee PC; Giordani F; Vincent IM; Crouch K; Achcar F; Dickens NJ; Morrison LJ; MacLeod A; Barrett MP
    PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009939. PubMed ID: 34752454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput decoding of drug targets and drug resistance mechanisms in African trypanosomes.
    Horn D
    Parasitology; 2014 Jan; 141(1):77-82. PubMed ID: 23561654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles.
    Zhang N; Zoltner M; Leung KF; Scullion P; Hutchinson S; Del Pino RC; Vincent IM; Zhang YK; Freund YR; Alley MRK; Jacobs RT; Read KD; Barrett MP; Horn D; Field MC
    PLoS Pathog; 2018 Feb; 14(2):e1006850. PubMed ID: 29425238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle.
    Matovu E; Seebeck T; Enyaru JC; Kaminsky R
    Microbes Infect; 2001 Jul; 3(9):763-70. PubMed ID: 11489425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei.
    Steketee PC; Vincent IM; Achcar F; Giordani F; Kim DH; Creek DJ; Freund Y; Jacobs R; Rattigan K; Horn D; Field MC; MacLeod A; Barrett MP
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006450. PubMed ID: 29758036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newly identified antibacterial compounds are topoisomerase poisons in African trypanosomes.
    Tang SC; Shapiro TA
    Antimicrob Agents Chemother; 2010 Feb; 54(2):620-6. PubMed ID: 20008775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches.
    Gilbert IH
    J Med Chem; 2013 Oct; 56(20):7719-26. PubMed ID: 24015767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome.
    Schulz D; Mugnier MR; Paulsen EM; Kim HS; Chung CW; Tough DF; Rioja I; Prinjha RK; Papavasiliou FN; Debler EW
    PLoS Biol; 2015 Dec; 13(12):e1002316. PubMed ID: 26646171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives.
    Wilkinson SR; Bot C; Kelly JM; Hall BS
    Curr Top Med Chem; 2011; 11(16):2072-84. PubMed ID: 21619510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating mammalian tyrosine phosphatase inhibitors as potential 'piggyback' leads to target Trypanosoma brucei transmission.
    Ruberto I; Szoor B; Clark R; Matthews KR
    Chem Biol Drug Des; 2013 Feb; 81(2):291-301. PubMed ID: 23066974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSR1 induces cell death through inactivation of CPSF3.
    Zhu ZH; Yu YP; Shi YK; Nelson JB; Luo JH
    Oncogene; 2009 Jan; 28(1):41-51. PubMed ID: 18806823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease.
    Liu H; Moore CL
    Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput decoding of antitrypanosomal drug efficacy and resistance.
    Alsford S; Eckert S; Baker N; Glover L; Sanchez-Flores A; Leung KF; Turner DJ; Field MC; Berriman M; Horn D
    Nature; 2012 Jan; 482(7384):232-6. PubMed ID: 22278056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential new drugs for human African trypanosomiasis: some progress at last.
    Barrett MP
    Curr Opin Infect Dis; 2010 Dec; 23(6):603-8. PubMed ID: 20844428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.