These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30185802)

  • 1. Attending to Visual Stimuli versus Performing Visual Imagery as a Control Strategy for EEG-based Brain-Computer Interfaces.
    Kosmyna N; Lindgren JT; Lécuyer A
    Sci Rep; 2018 Sep; 8(1):13222. PubMed ID: 30185802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders.
    Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M
    J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspecific Visuospatial Imagery as a Novel Mental Task for Online EEG-Based BCI Control.
    Stojic F; Chau T
    Int J Neural Syst; 2020 Jun; 30(6):2050026. PubMed ID: 32498642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue in children using motor imagery and P300 brain-computer interfaces.
    Keough JR; Irvine B; Kelly D; Wrightson J; Comaduran Marquez D; Kinney-Lang E; Kirton A
    J Neuroeng Rehabil; 2024 Apr; 21(1):61. PubMed ID: 38658998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Visual Imagery by Electroencephalography Based on Empirical Mode Decomposition and an Autoregressive Model.
    Fu Y; Li Z; Gong A; Qian Q; Su L; Zhao L
    Comput Intell Neurosci; 2022; 2022():1038901. PubMed ID: 35140763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance.
    Bamdadian A; Guan C; Ang KK; Xu J
    J Neurosci Methods; 2014 Sep; 235():138-44. PubMed ID: 24979726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter.
    Rozado D; Duenser A; Howell B
    PLoS One; 2015; 10(3):e0121262. PubMed ID: 25816285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the Feasibility of Visual Imagery for an EEG-Based Brain-Computer Interface.
    Kilmarx J; Tashev I; Millan JDR; Sulzer J; Lewis-Peacock J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2209-2219. PubMed ID: 38843055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
    Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y
    Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery.
    Vuckovic A; Osuagwu BA
    Clin Neurophysiol; 2013 Aug; 124(8):1586-95. PubMed ID: 23535455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of distinct mental strategies on classification performance for brain-computer interfaces.
    Friedrich EV; Scherer R; Neuper C
    Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online EEG Classification of Covert Speech for Brain-Computer Interfacing.
    Sereshkeh AR; Trott R; Bricout A; Chau T
    Int J Neural Syst; 2017 Dec; 27(8):1750033. PubMed ID: 28830308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures.
    Mondini V; Mangia AL; Cappello A
    Comput Intell Neurosci; 2016; 2016():4562601. PubMed ID: 27635129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.