These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30186083)

  • 1. Effects of object size and distance on reaching kinematics in patients with schizophrenia.
    Wang SM; Kuo LC; Ouyang WC; Hsu HM; Ma HI
    Hong Kong J Occup Ther; 2018 Jun; 31(1):22-29. PubMed ID: 30186083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of object size on unimanual and bimanual movements in patients with schizophrenia.
    Wang SM; Kuo LC; Ouyang WC; Hsu HM; Lin KC; Ma HI
    Am J Occup Ther; 2014; 68(2):230-8. PubMed ID: 24581410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different types of sensory signals on reaching performance in persons with chronic schizophrenia.
    Huang PS; Chen CL; Yeung KT; Hsu MY; Wan SW; Lou SZ
    PLoS One; 2020; 15(6):e0234976. PubMed ID: 32579579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of object size and task goals on reaching kinematics in a non-immersive virtual environment.
    Chen Y; Armstrong C; Childers R; Do A; Thirey K; Xu J; Bryant DG; Howard A
    Hum Mov Sci; 2022 Jun; 83():102954. PubMed ID: 35472658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of dominant hand to non-dominant hand in conduction of reaching task from 3D kinematic data: Trade-off between successful rate and movement efficiency.
    Xiao X; Hu HJ; Li LF; Li L
    Math Biosci Eng; 2019 Feb; 16(3):1611-1624. PubMed ID: 30947435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast-moving target in the Valpar assembly task improved unimanual and bimanual movements in patients with schizophrenia.
    Wang SM; Kuo LC; Ouyang WC; Hsu HM; Ma HI
    Disabil Rehabil; 2013 Sep; 35(19):1608-13. PubMed ID: 23311672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability.
    Wu C; Trombly CA; Lin K; Tickle-Degnen L
    Arch Phys Med Rehabil; 2000 Jan; 81(1):95-101. PubMed ID: 10638883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in quality of movements made with body-powered and myoelectric prostheses during activities of daily living.
    Engdahl SM; Gates DH
    Clin Biomech (Bristol, Avon); 2021 Apr; 84():105311. PubMed ID: 33812199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of variability of initial kinematics and endpoints of reaching movements.
    Messier J; Kalaska JF
    Exp Brain Res; 1999 Mar; 125(2):139-52. PubMed ID: 10204767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning and executing an action in Parkinson's disease.
    Gentilucci M; Negrotti A
    Mov Disord; 1999 Jan; 14(1):69-79. PubMed ID: 9918347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Object size modulates fronto-parietal activity during reaching movements.
    Tarantino V; De Sanctis T; Straulino E; Begliomini C; Castiello U
    Eur J Neurosci; 2014 May; 39(9):1528-37. PubMed ID: 24593322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of task goal on movement kinematics and line bisection performance in adults without disabilities.
    Lin KC; Wu CY; Trombly CA
    Am J Occup Ther; 1998 Mar; 52(3):179-87. PubMed ID: 9521993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting object size from hand kinematics: a temporal perspective.
    Ansuini C; Cavallo A; Koul A; Jacono M; Yang Y; Becchio C
    PLoS One; 2015; 10(3):e0120432. PubMed ID: 25781473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of object size and rigidity on infant reaching.
    Rocha NA; Silva FP; Tudella E
    Infant Behav Dev; 2006 Apr; 29(2):251-61. PubMed ID: 17138280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the reach-to-grasp movement between children and adults: a kinematic study.
    Zoia S; Pezzetta E; Blason L; Scabar A; Carrozzi M; Bulgheroni M; Castiello U
    Dev Neuropsychol; 2006; 30(2):719-38. PubMed ID: 16995833
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.