These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30186083)

  • 21. Planning an action.
    Gentilucci M; Negrotti A; Gangitano M
    Exp Brain Res; 1997 Jun; 115(1):116-28. PubMed ID: 9224839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study.
    Robertson JV; Hoellinger T; Lindberg P; Bensmail D; Hanneton S; Roby-Brami A
    J Neuroeng Rehabil; 2009 Dec; 6():45. PubMed ID: 20017935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting higher-order movement planning: a kinematic analysis of human prehension.
    Jakobson LS; Goodale MA
    Exp Brain Res; 1991; 86(1):199-208. PubMed ID: 1756790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematics of prehension and pointing movements in C6 quadriplegic patients.
    Laffont I; Briand E; Dizien O; Combeaud M; Bussel B; Revol M; Roby-Brami A
    Spinal Cord; 2000 Jun; 38(6):354-62. PubMed ID: 10889564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of rehabilitation tasks on organization of movement after stroke.
    Trombly CA; Wu CY
    Am J Occup Ther; 1999; 53(4):333-44. PubMed ID: 10427675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of object size on prehension in leukotomized and unleukotomized individuals with schizophrenia.
    Carnahan H; Elliott D; Velamoor VR
    J Clin Exp Neuropsychol; 1996 Feb; 18(1):136-47. PubMed ID: 8926292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Grasping others' movements: Rapid discrimination of object size from observed hand movements.
    Ansuini C; Cavallo A; Koul A; D'Ausilio A; Taverna L; Becchio C
    J Exp Psychol Hum Percept Perform; 2016 Jul; 42(7):918-29. PubMed ID: 27078036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Social scaling of extrapersonal space: target objects are judged as closer when the reference frame is a human agent with available movement potentialities.
    Fini C; Brass M; Committeri G
    Cognition; 2015 Jan; 134():50-6. PubMed ID: 25460378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis.
    Viau A; Feldman AG; McFadyen BJ; Levin MF
    J Neuroeng Rehabil; 2004 Dec; 1(1):11. PubMed ID: 15679937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
    Coats R; Bingham GP; Mon-Williams M
    Exp Brain Res; 2008 Aug; 189(2):211-20. PubMed ID: 18493753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmented perception: slower space-based but faster object-based attention in recent-onset psychosis with and without Schizophrenia.
    Smid HG; Bruggeman R; Martens S
    PLoS One; 2013; 8(3):e59983. PubMed ID: 23536901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prehension with trunk assisted reaching.
    Saling M; Stelmach GE; Mescheriakov S; Berger M
    Behav Brain Res; 1996 Oct; 80(1-2):153-60. PubMed ID: 8905138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual decisions about object shape bias visuomotor coordination during rapid interception movements.
    Barany DA; Gómez-Granados A; Schrayer M; Cutts SA; Singh T
    J Neurophysiol; 2020 Jun; 123(6):2235-2248. PubMed ID: 32374224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics.
    Bootsma RJ; Marteniuk RG; MacKenzie CL; Zaal FT
    Exp Brain Res; 1994; 98(3):535-41. PubMed ID: 8056073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch.
    Nataraj R; Pasluosta C; Li ZM
    Hum Mov Sci; 2014 Aug; 36():134-53. PubMed ID: 24968371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.