These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30186308)

  • 1. A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square.
    Zhao Y; Chen X; Yin J
    Front Genet; 2018; 9():324. PubMed ID: 30186308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying and Exploiting Potential miRNA-Disease Associations With Neighborhood Regularized Logistic Matrix Factorization.
    He BS; Qu J; Zhao Q
    Front Genet; 2018; 9():303. PubMed ID: 30131824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph regularized L
    Gao Z; Wang YT; Wu QW; Ni JC; Zheng CH
    BMC Bioinformatics; 2020 Feb; 21(1):61. PubMed ID: 32070280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hessian Regularized [Formula: see text]-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.
    Han GS; Gao Q; Peng LZ; Tang J
    Interdiscip Sci; 2024 Mar; 16(1):176-191. PubMed ID: 38099958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.
    Wang CC; Chen X; Yin J; Qu J
    RNA Biol; 2019 Mar; 16(3):257-269. PubMed ID: 30646823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRMDA: Graph Regression for MiRNA-Disease Association Prediction.
    Chen X; Yang JR; Guan NN; Li JQ
    Front Physiol; 2018; 9():92. PubMed ID: 29515453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization.
    Li L; Gao Z; Wang YT; Zhang MW; Ni JC; Zheng CH; Su Y
    PLoS Comput Biol; 2021 Jul; 17(7):e1009165. PubMed ID: 34252084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA-Disease Association Prediction.
    Ni J; Li L; Wang Y; Ji C; Zheng C
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
    Qu Q; Chen X; Ning B; Zhang X; Nie H; Zeng L; Chen H; Fu X
    Methods; 2023 Apr; 212():1-9. PubMed ID: 36813017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
    Chen X; Zhou Z; Zhao Y
    RNA Biol; 2018; 15(6):807-818. PubMed ID: 29619882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization.
    He BS; Peng LH; Li Z
    Front Microbiol; 2018; 9():2560. PubMed ID: 30443240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association.
    Jiang L; Xiao Y; Ding Y; Tang J; Guo F
    BMC Genomics; 2018 Dec; 19(Suppl 10):911. PubMed ID: 30598109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization.
    Chen X; Li SX; Yin J; Wang CC
    Genomics; 2020 Jan; 112(1):809-819. PubMed ID: 31136792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDMF: Predicting miRNA-Disease Association Based on Matrix Factorization with Disease Similarity Constraint.
    Ha J
    J Pers Med; 2022 May; 12(6):. PubMed ID: 35743670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.