These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3018676)

  • 1. Nucleotide sequence of the yeast cell division cycle start genes CDC28, CDC36, CDC37, and CDC39, and a structural analysis of the predicted products.
    Ferguson J; Ho JY; Peterson TA; Reed SI
    Nucleic Acids Res; 1986 Aug; 14(16):6681-97. PubMed ID: 3018676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39.
    Breter HJ; Ferguson J; Peterson TA; Reed SI
    Mol Cell Biol; 1983 May; 3(5):881-91. PubMed ID: 6346060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway.
    de Barros Lopes M; Ho JY; Reed SI
    Mol Cell Biol; 1990 Jun; 10(6):2966-72. PubMed ID: 2111445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage.
    Kammerer B; Guyonvarch A; Hubert JC
    J Mol Biol; 1984 Dec; 180(2):239-50. PubMed ID: 6096561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDC36 and CDC39 are negative elements in the signal transduction pathway of yeast.
    Neiman AM; Chang F; Komachi K; Herskowitz I
    Cell Regul; 1990 Apr; 1(5):391-401. PubMed ID: 2099190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.
    Shuster JR
    Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A relationship between the yeast cell cycle genes CDC4 and CDC36 and the ets sequence of oncogenic virus E26.
    Peterson TA; Yochem J; Byers B; Nunn MF; Duesberg PH; Doolittle RF; Reed SI
    Nature; 1984 Jun 7-13; 309(5968):556-8. PubMed ID: 6374468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RAD2 gene of Saccharomyces cerevisiae: nucleotide sequence and transcript mapping.
    Nicolet CM; Chenevert JM; Friedberg EC
    Gene; 1985; 36(3):225-34. PubMed ID: 3000874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions.
    Sumrada RA; Cooper TG
    J Bacteriol; 1984 Dec; 160(3):1078-87. PubMed ID: 6094498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium.
    Shuster JR
    J Bacteriol; 1982 Aug; 151(2):1059-61. PubMed ID: 7047491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage.
    Barker DG; White JH; Johnston LH
    Nucleic Acids Res; 1985 Dec; 13(23):8323-37. PubMed ID: 3909103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ILV5 gene of Saccharomyces cerevisiae is highly expressed.
    Petersen JG; Holmberg S
    Nucleic Acids Res; 1986 Dec; 14(24):9631-51. PubMed ID: 3027658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins.
    Gerber MR; Farrell A; Deshaies RJ; Herskowitz I; Morgan DO
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4651-5. PubMed ID: 7753858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between transcriptional and translational control of gene expression in Saccharomyces cerevisiae: a multiple regression analysis.
    Pavesi A
    J Mol Evol; 1999 Feb; 48(2):133-41. PubMed ID: 9929381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary characterization of the transcriptional and translational products of the Saccharomyces cerevisiae cell division cycle gene CDC28.
    Reed SI; Ferguson J; Groppe JC
    Mol Cell Biol; 1982 Apr; 2(4):412-25. PubMed ID: 6287237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae.
    Shuster EO; Byers B
    Genetics; 1989 Sep; 123(1):29-43. PubMed ID: 2680756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleotide sequence of the PRI1 gene related to DNA primase in Saccharomyces cerevisiae.
    Plevani P; Francesconi S; Lucchini G
    Nucleic Acids Res; 1987 Oct; 15(19):7975-89. PubMed ID: 3313275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence analysis of temperature-sensitive mutations in the Saccharomyces cerevisiae gene CDC28.
    Lörincz AT; Reed SI
    Mol Cell Biol; 1986 Nov; 6(11):4099-103. PubMed ID: 3540606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of the yeast cell division cycle gene CDC4 and a related pseudogene.
    Yochem J; Byers B
    J Mol Biol; 1987 May; 195(2):233-45. PubMed ID: 3309335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the Saccharomyces cerevisiae dihydrofolate reductase gene (DFR1).
    Lagosky PA; Taylor GR; Haynes RH
    Nucleic Acids Res; 1987 Dec; 15(24):10355-71. PubMed ID: 2827121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.