These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30186834)

  • 1. Corrigendum: Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants.
    Sreeman SM; Vijayaraghavareddy P; Sreevathsa R; Rajendrareddy S; Arakesh S; Bharti P; Dharmappa P; Soolanayakanahally R
    Front Chem; 2018; 6():382. PubMed ID: 30186834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants.
    Sreeman SM; Vijayaraghavareddy P; Sreevathsa R; Rajendrareddy S; Arakesh S; Bharti P; Dharmappa P; Soolanayakanahally R
    Front Chem; 2018; 6():92. PubMed ID: 29692985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut.
    Ramu VS; Swetha TN; Sheela SH; Babitha CK; Rohini S; Reddy MK; Tuteja N; Reddy CP; Prasad TG; Udayakumar M
    Plant Biotechnol J; 2016 Mar; 14(3):1008-20. PubMed ID: 26383697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene discovery in cereals through quantitative trait loci and expression analysis in water-use efficiency measured by carbon isotope discrimination.
    Chen J; Chang SX; Anyia AO
    Plant Cell Environ; 2011 Dec; 34(12):2009-23. PubMed ID: 21752030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach.
    Tardieu F; Simonneau T; Muller B
    Annu Rev Plant Biol; 2018 Apr; 69():733-759. PubMed ID: 29553801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient.
    Knutzen F; Meier IC; Leuschner C
    Tree Physiol; 2015 Sep; 35(9):949-63. PubMed ID: 26209617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.
    Meng LS
    J Agric Food Chem; 2018 Apr; 66(14):3595-3604. PubMed ID: 29589939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological, biochemical and morphoagronomic characterization of drought-tolerant and drought-sensitive bean genotypes under water stress.
    Arruda IM; Moda-Cirino V; Koltun A; Dos Santos OJAP; Moreira RS; Moreira AFP; Gonçalves LSA
    Physiol Mol Biol Plants; 2018 Nov; 24(6):1059-1067. PubMed ID: 30425423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance.
    Zargar SM; Nagar P; Deshmukh R; Nazir M; Wani AA; Masoodi KZ; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():233-238. PubMed ID: 28412527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and genomic tools to improve drought tolerance in wheat.
    Fleury D; Jefferies S; Kuchel H; Langridge P
    J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding implications of drought stress under future climate for upland rice in Brazil.
    Ramirez-Villegas J; Heinemann AB; Pereira de Castro A; Breseghello F; Navarro-Racines C; Li T; Rebolledo MC; Challinor AJ
    Glob Chang Biol; 2018 May; 24(5):2035-2050. PubMed ID: 29369459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrigendum: Partial Substitution of K by Na Alleviates Drought Stress and Increases Water Use Efficiency in
    Mateus NS; Florentino AL; Santos EF; Ferraz AV; Goncalves JLM; Lavres J
    Front Plant Sci; 2021; 12():689963. PubMed ID: 34025710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding regulatory networks and engineering for enhanced drought tolerance in plants.
    Valliyodan B; Nguyen HT
    Curr Opin Plant Biol; 2006 Apr; 9(2):189-95. PubMed ID: 16483835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice.
    Barik SR; Pandit E; Pradhan SK; Mohanty SP; Mohapatra T
    PLoS One; 2019; 14(12):e0214979. PubMed ID: 31846460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits.
    Fan Y; Shabala S; Ma Y; Xu R; Zhou M
    BMC Genomics; 2015 Feb; 16(1):43. PubMed ID: 25651931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.