These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30187066)

  • 1. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined electrokinetic and shear flows control colloidal particle distribution across microchannel cross-sections.
    Lochab V; Prakash S
    Soft Matter; 2021 Jan; 17(3):611-620. PubMed ID: 33201951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic microfluidics: progress and challenges.
    Zhou J; Papautsky I
    Microsyst Nanoeng; 2020; 6():113. PubMed ID: 34567720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.
    Howard MP; Panagiotopoulos AZ; Nikoubashman A
    J Chem Phys; 2015 Jun; 142(22):224908. PubMed ID: 26071732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow.
    Kim JY; Ahn SW; Lee SS; Kim JM
    Lab Chip; 2012 Aug; 12(16):2807-14. PubMed ID: 22776909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel.
    Tasadduq B; Lam W; Alexeev A; Sarioglu AF; Sulchek T
    Sci Rep; 2017 Dec; 7(1):17375. PubMed ID: 29234006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertio-elastic focusing of bioparticles in microchannels at high throughput.
    Lim EJ; Ober TJ; Edd JF; Desai SP; Neal D; Bong KW; Doyle PS; McKinley GH; Toner M
    Nat Commun; 2014 Jun; 5():4120. PubMed ID: 24939508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
    Lu X; Xuan X
    Anal Chem; 2015 Nov; 87(22):11523-30. PubMed ID: 26505113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focusing and splitting streams of soft particles in microflows via viscosity gradients.
    Laumann M; Zimmermann W
    Eur Phys J E Soft Matter; 2019 Aug; 42(8):108. PubMed ID: 31444586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.
    Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W
    Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
    Shendruk TN; Tahvildari R; Catafard NM; Andrzejewski L; Gigault C; Todd A; Gagne-Dumais L; Slater GW; Godin M
    Anal Chem; 2013 Jun; 85(12):5981-8. PubMed ID: 23650976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.
    Tanriverdi S; Cruz J; Habibi S; Amini K; Costa M; Lundell F; MĂ„rtensson G; Brandt L; Tammisola O; Russom A
    Microsyst Nanoeng; 2024; 10():87. PubMed ID: 38919163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid.
    Hashemi N; Howell PB; Erickson JS; Golden JP; Ligler FS
    Lab Chip; 2010 Aug; 10(15):1952-9. PubMed ID: 20480064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.