These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30187403)
1. Radiostrontium transport in plants and phytoremediation. Gupta DK; Schulz W; Steinhauser G; Walther C Environ Sci Pollut Res Int; 2018 Oct; 25(30):29996-30008. PubMed ID: 30187403 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Sharma S; Singh B; Manchanda VK Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712 [TBL] [Abstract][Full Text] [Related]
3. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. Ammar A; Nouira A; El Mouridi Z; Boughribil S Chemosphere; 2024 Jul; 359():142273. PubMed ID: 38750727 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of radiostrontium ((90)Sr) and radiocesium ((137)Cs) using giant milky weed (Calotropis gigantea R.Br.) plants. Eapen S; Singh S; Thorat V; Kaushik CP; Raj K; D'Souza SF Chemosphere; 2006 Dec; 65(11):2071-3. PubMed ID: 16876232 [TBL] [Abstract][Full Text] [Related]
5. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Boechat CL; Pistóia VC; Gianelo C; Camargo FA Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450 [TBL] [Abstract][Full Text] [Related]
6. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Burger A; Lichtscheidl I Sci Total Environ; 2019 Feb; 653():1458-1512. PubMed ID: 30759584 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of toxic metals from soil and waste water. Hooda V J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of heavy metals--concepts and applications. Ali H; Khan E; Sajad MA Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Singh S; Eapen S; Thorat V; Kaushik CP; Raj K; D'Souza SF Ecotoxicol Environ Saf; 2008 Feb; 69(2):306-11. PubMed ID: 17257679 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites. Luo J; Qi S; Peng L; Wang J Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117 [TBL] [Abstract][Full Text] [Related]
11. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Kumari A; Lal B; Rai UN Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation: an overview of metallic ion decontamination from soil. Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555 [TBL] [Abstract][Full Text] [Related]
13. Approaches for enhanced phytoextraction of heavy metals. Bhargava A; Carmona FF; Bhargava M; Srivastava S J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973 [TBL] [Abstract][Full Text] [Related]
14. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation. Usharani B; Vasudevan N Arch Environ Occup Health; 2016; 71(2):102-10. PubMed ID: 25454352 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of toxic trace elements in soil and water. LeDuc DL; Terry N J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830 [TBL] [Abstract][Full Text] [Related]
16. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
17. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution. Horiike T; Dotsuta Y; Nakano Y; Ochiai A; Utsunomiya S; Ohnuki T; Yamashita M Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802269 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediative urban design: transforming a derelict and polluted harbour area into a green and productive neighbourhood. Wilschut M; Theuws PA; Duchhart I Environ Pollut; 2013 Dec; 183():81-8. PubMed ID: 23452757 [TBL] [Abstract][Full Text] [Related]
20. Long-term radiostrontium interactions and transport through sediment. Kaplan DI; Miller TJ; Diprete D; Powell BA Environ Sci Technol; 2014; 48(15):8919-25. PubMed ID: 24960400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]