BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 30187672)

  • 1. The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry.
    Ghosh AK; Brindisi M; Sarkar A
    ChemMedChem; 2018 Nov; 13(22):2351-2373. PubMed ID: 30187672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses.
    Ghosh AK; Sarkar A; Brindisi M
    Org Biomol Chem; 2018 Mar; 16(12):2006-2027. PubMed ID: 29479624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry.
    Ghosh AK; Brindisi M
    J Med Chem; 2020 Mar; 63(6):2751-2788. PubMed ID: 31789518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curtius rearrangement of aromatic carboxylic acids to access protected anilines and aromatic ureas.
    Lebel H; Leogane O
    Org Lett; 2006 Dec; 8(25):5717-20. PubMed ID: 17134255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TCT-mediated click chemistry for the synthesis of nitrogen-containing functionalities: conversion of carboxylic acids to carbamides, carbamates, carbamothioates, amides and amines.
    Ahmed R; Gupta R; Akhter Z; Kumar M; Singh PP
    Org Biomol Chem; 2022 Jun; 20(24):4942-4948. PubMed ID: 35660834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modular flow reactor for performing Curtius rearrangements as a continuous flow process.
    Baumann M; Baxendale IR; Ley SV; Nikbin N; Smith CD; Tierney JP
    Org Biomol Chem; 2008 May; 6(9):1577-86. PubMed ID: 18421389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions.
    Baumann M; Baxendale IR; Ley SV; Nikbin N; Smith CD
    Org Biomol Chem; 2008 May; 6(9):1587-93. PubMed ID: 18421390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 3-aryl-2-arylamidobenzofurans based on the Curtius rearrangement.
    Carrër A; Florent JC; Auvrouin E; Rousselle P; Bertounesque E
    J Org Chem; 2011 Apr; 76(8):2502-20. PubMed ID: 21391629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives.
    Kulkarni AR; Garai S; Thakur GA
    J Org Chem; 2017 Jan; 82(2):992-999. PubMed ID: 27966953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral amines derived from 2-arylpropionic acids: novel reagents for the liquid chromatographic (LC) fluorescence assay of optically active carboxylic acid xenobiotics.
    Spahn H; Langguth P
    Pharm Res; 1990 Dec; 7(12):1262-8. PubMed ID: 2095564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synthesis and evaluation of the antiproliferative activity of deacidified GEX1A analogues.
    Imaizumi T; Nakagawa H; Hori R; Watanabe Y; Soga S; Iida K; Onodera H
    J Antibiot (Tokyo); 2017 May; 70(5):675-679. PubMed ID: 28096548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium(IV) isopropoxide mediated solution phase reductive amination on an automated platform: application in the generation of urea and amide libraries.
    Bhattacharyya S; Fan L; Vo L; Labadie J
    Comb Chem High Throughput Screen; 2000 Apr; 3(2):117-24. PubMed ID: 10788582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Conversion of Carboxylic Acids to Various Nitrogen-Containing Compounds in the One-Pot Exploiting Curtius Rearrangement.
    Kumar A; Kumar N; Sharma R; Bhargava G; Mahajan D
    J Org Chem; 2019 Sep; 84(17):11323-11334. PubMed ID: 31393719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent Synthesis of γ-Amino Acid and γ-Lactam Derivatives from meso-Glutaric Anhydrides.
    Smith SN; Craig R; Connon SJ
    Chemistry; 2020 Oct; 26(59):13378-13382. PubMed ID: 32996163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boc-protected amines via a mild and efficient one-pot Curtius rearrangement.
    Lebel H; Leogane O
    Org Lett; 2005 Sep; 7(19):4107-10. PubMed ID: 16146363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometry-selective synthesis of E or Z N-vinyl ureas (N-carbamoyl enamines).
    Lefranc J; Tetlow DJ; Donnard M; Minassi A; Gálvez E; Clayden J
    Org Lett; 2011 Jan; 13(2):296-9. PubMed ID: 21166427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial synthesis of 3-(amidoalkyl) and 3-(aminoalkyl)-2-arylindole derivatives: discovery of potent ligands for a variety of G-protein coupled receptors.
    Willoughby CA; Hutchins SM; Rosauer KG; Dhar MJ; Chapman KT; Chicchi GG; Sadowski S; Weinberg DH; Patel S; Malkowitz L; Di Salvo J; Pacholok SG; Cheng K
    Bioorg Med Chem Lett; 2002 Jan; 12(1):93-6. PubMed ID: 11738581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, isolation, and characterization of Nalpha-Fmoc-peptide isocyanates: solution synthesis of oligo-alpha-peptidyl ureas.
    Sureshbabu VV; Patil BS; Venkataramanarao R
    J Org Chem; 2006 Sep; 71(20):7697-705. PubMed ID: 16995676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solid-phase synthesis of N,N'-disubstituted ureas and Perhydroimidazo.
    Migawa MT; Swayze EE
    Org Lett; 2000 Oct; 2(21):3309-11. PubMed ID: 11029197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions.
    Peterson SL; Stucka SM; Dinsmore CJ
    Org Lett; 2010 Mar; 12(6):1340-3. PubMed ID: 20175533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.