These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30187892)

  • 1. An SVM approach for identifying atrial fibrillation.
    Gliner V; Yaniv Y
    Physiol Meas; 2018 Sep; 39(9):094007. PubMed ID: 30187892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features.
    Shao M; Bin G; Wu S; Bin G; Huang J; Zhou Z
    Physiol Meas; 2018 Sep; 39(9):094008. PubMed ID: 30187894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG.
    Plesinger F; Nejedly P; Viscor I; Halamek J; Jurak P
    Physiol Meas; 2018 Sep; 39(9):094002. PubMed ID: 30102251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A support vector machine approach for AF classification from a short single-lead ECG recording.
    Liu N; Sun M; Wang L; Zhou W; Dang H; Zhou X
    Physiol Meas; 2018 Jun; 39(6):064004. PubMed ID: 29794340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting atrial fibrillation from short single lead ECGs using statistical and morphological features.
    Athif M; Yasawardene PC; Daluwatte C
    Physiol Meas; 2018 Jun; 39(6):064002. PubMed ID: 29767635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the spontaneous termination of atrial fibrillation based on poincare section in the electrocardiogram phase space.
    Parvaneh S; Golpayegani MR; Firoozabadi M; Haghjoo M
    Proc Inst Mech Eng H; 2012 Jan; 226(1):3-20. PubMed ID: 22888580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms.
    Sodmann P; Vollmer M; Nath N; Kaderali L
    Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of atrial activities for abnormality detection by phase rectified signal averaging technique.
    Maji U; Pal S; Mitra M
    J Med Eng Technol; 2015; 39(5):291-302. PubMed ID: 26084877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of atrial fibrillation episodes using SVM.
    Mohebbi M; Ghassemian H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():177-80. PubMed ID: 19162622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
    Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S
    J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-complexity algorithm for detection of atrial fibrillation using an ECG.
    Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P
    Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture.
    Mukherjee A; Dutta Choudhury A; Datta S; Puri C; Banerjee R; Singh R; Ukil A; Bandyopadhyay S; Pal A; Khandelwal S
    Physiol Meas; 2019 Jun; 40(5):054006. PubMed ID: 30650387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017.
    Kleyko D; Osipov E; Wiklund U
    Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost.
    Chen Y; Wang X; Jung Y; Abedi V; Zand R; Bikak M; Adibuzzaman M
    Physiol Meas; 2018 Oct; 39(10):104006. PubMed ID: 30183685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting spontaneous termination of atrial fibrillation based on the RR interval.
    Sun RR; Wang YY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):713-26. PubMed ID: 19743637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot.
    Sun R; Wang Y
    Med Eng Phys; 2008 Nov; 30(9):1105-11. PubMed ID: 18343707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for detection of the transition between atrial fibrillation and sinus rhythm.
    Huang C; Ye S; Chen H; Li D; He F; Tu Y
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1113-9. PubMed ID: 21134807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device.
    Smisek R; Hejc J; Ronzhina M; Nemcova A; Marsanova L; Kolarova J; Smital L; Vitek M
    Physiol Meas; 2018 Sep; 39(9):094003. PubMed ID: 30102239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency tracking of atrial fibrillation using hidden Markov models.
    Sandberg F; Stridh M; Sörnmo L
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):502-11. PubMed ID: 18269985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.