BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 30188004)

  • 1. Seeds of future past: climate change and the thermal memory of plant reproductive traits.
    Fernández-Pascual E; Mattana E; Pritchard HW
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):439-456. PubMed ID: 30188004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures.
    Bernareggi G; Carbognani M; Mondoni A; Petraglia A
    Ann Bot; 2016 Sep; 118(3):529-39. PubMed ID: 27390354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment.
    Klupczyńska EA; Pawłowski TA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris.
    Orrù M; Mattana E; Pritchard HW; Bacchetta G
    Ann Bot; 2012 Dec; 110(8):1651-60. PubMed ID: 23071219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of global warming on germination and seedling emergence in Alliaria petiolata, a woodland species with dormancy loss dependent on low temperature.
    Footitt S; Huang Z; Ölcer-Footitt H; Clay H; Finch-Savage WE
    Plant Biol (Stuttg); 2018 Jul; 20(4):682-690. PubMed ID: 29570924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of seed and seedling functional traits in native Helianthus species and the crop H. annuus (sunflower).
    Castillo-Lorenzo E; Pritchard HW; Finch-Savage WE; Seal CE
    Plant Biol (Stuttg); 2019 May; 21(3):533-543. PubMed ID: 30353985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario.
    Batlla D; Malavert C; Farnocchia RBF; Footitt S; Benech-Arnold RL; Finch-Savage WE
    J Exp Bot; 2022 Apr; 73(8):2454-2468. PubMed ID: 35106531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local climate explains degree of seed dormancy in Hypericum elodes L. (Hypericaceae).
    Carta A; Probert R; Puglia G; Peruzzi L; Bedini G
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():76-82. PubMed ID: 25662792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental climate warming enforces seed dormancy in South African Proteaceae but seedling drought resilience exceeds summer drought periods.
    Arnolds JL; Musil CF; Rebelo AG; Krüger GH
    Oecologia; 2015 Apr; 177(4):1103-16. PubMed ID: 25502439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species.
    Seglias AE; Williams E; Bilge A; Kramer AT
    PLoS One; 2018; 13(2):e0191931. PubMed ID: 29401470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed germination and dormancy traits of forbs and shrubs important for restoration of North American dryland ecosystems.
    Kildisheva OA; Erickson TE; Madsen MD; Dixon KW; Merritt DJ
    Plant Biol (Stuttg); 2019 May; 21(3):458-469. PubMed ID: 30098068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates.
    Stevens AV; Nicotra AB; Godfree RC; Guja LK
    Plant Biol (Stuttg); 2020 May; 22(3):500-513. PubMed ID: 32011086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dormancy cycles in buried seeds of three perennial Xyris (Xyridaceae) species from the Brazilian campo rupestre.
    Oliveira TGS; Diamantino IP; Garcia QS
    Plant Biol (Stuttg); 2017 Sep; 19(5):818-823. PubMed ID: 28646622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seedling performance covaries with dormancy thresholds: maintaining cryptic seed heteromorphism in a fire-prone system.
    Liyanage GS; Ayre DJ; Ooi MK
    Ecology; 2016 Nov; 97(11):3009-3018. PubMed ID: 27870036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the Loess Plateau of northwestern China.
    Hu XW; Wu YP; Ding XY; Zhang R; Wang YR; Baskin JM; Baskin CC
    PLoS One; 2014; 9(11):e112579. PubMed ID: 25396423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in Arabidopsis.
    Huang Z; Footitt S; Tang A; Finch-Savage WE
    Plant Cell Environ; 2018 Jan; 41(1):187-197. PubMed ID: 29044545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics.
    Cross AT; Turner SR; Renton M; Baskin JM; Dixon KW; Merritt DJ
    Ann Bot; 2015 Apr; 115(5):847-59. PubMed ID: 25660345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual.
    Lu JJ; Tan DY; Baskin CC; Baskin JM
    Sci Rep; 2016 Apr; 6():25076. PubMed ID: 27117090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed dormancy and germination.
    Penfield S
    Curr Biol; 2017 Sep; 27(17):R874-R878. PubMed ID: 28898656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth.
    Porceddu M; Mattana E; Pritchard HW; Bacchetta G
    Plant Biol (Stuttg); 2017 Nov; 19(6):983-993. PubMed ID: 28762612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.