BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30188230)

  • 1. IL7R overexpression in adult acute lymphoblastic leukemia is associated to JAK/STAT pathway mutations and identifies patients who could benefit from targeted therapies.
    Gianfelici V; Messina M; Paoloni F; Peragine N; Lauretti A; Fedullo AL; Di Giacomo F; Vignetti M; Vitale A; Guarini A; Chiaretti S; Foà R
    Leuk Lymphoma; 2019 Mar; 60(3):829-832. PubMed ID: 30188230
    [No Abstract]   [Full Text] [Related]  

  • 2. Clinical and biological features of PTPN2-deleted adult and pediatric T-cell acute lymphoblastic leukemia.
    Alcantara M; Simonin M; Lhermitte L; Touzart A; Dourthe ME; Latiri M; Grardel N; Cayuela JM; Chalandon Y; Graux C; Dombret H; Ifrah N; Petit A; Macintyre E; Baruchel A; Boissel N; Asnafi V
    Blood Adv; 2019 Jul; 3(13):1981-1988. PubMed ID: 31270080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
    Vicente C; Schwab C; Broux M; Geerdens E; Degryse S; Demeyer S; Lahortiga I; Elliott A; Chilton L; La Starza R; Mecucci C; Vandenberghe P; Goulden N; Vora A; Moorman AV; Soulier J; Harrison CJ; Clappier E; Cools J
    Haematologica; 2015 Oct; 100(10):1301-10. PubMed ID: 26206799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.
    Girardi T; Vereecke S; Sulima SO; Khan Y; Fancello L; Briggs JW; Schwab C; de Beeck JO; Verbeeck J; Royaert J; Geerdens E; Vicente C; Bornschein S; Harrison CJ; Meijerink JP; Cools J; Dinman JD; Kampen KR; De Keersmaecker K
    Leukemia; 2018 Mar; 32(3):809-819. PubMed ID: 28744013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell profiling of pediatric T-cell acute lymphoblastic leukemia: Impact of PTEN exon 7 mutation on PI3K/Akt and JAK-STAT signaling pathways.
    Bonaccorso P; Bugarin C; Buracchi C; Fazio G; Biondi A; Lo Nigro L; Gaipa G
    Cytometry B Clin Cytom; 2020 Nov; 98(6):491-503. PubMed ID: 32479694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.
    Maude SL; Dolai S; Delgado-Martin C; Vincent T; Robbins A; Selvanathan A; Ryan T; Hall J; Wood AC; Tasian SK; Hunger SP; Loh ML; Mullighan CG; Wood BL; Hermiston ML; Grupp SA; Lock RB; Teachey DT
    Blood; 2015 Mar; 125(11):1759-67. PubMed ID: 25645356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development.
    de Bock CE; Demeyer S; Degryse S; Verbeke D; Sweron B; Gielen O; Vandepoel R; Vicente C; Vanden Bempt M; Dagklis A; Geerdens E; Bornschein S; Gijsbers R; Soulier J; Meijerink JP; Heinäniemi M; Teppo S; Bouvy-Liivrand M; Lohi O; Radaelli E; Cools J
    Cancer Discov; 2018 May; 8(5):616-631. PubMed ID: 29496663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia.
    Sharma ND; Nickl CK; Kang H; Ornatowski W; Brown R; Ness SA; Loh ML; Mullighan CG; Winter SS; Hunger SP; Cannon JL; Matlawska-Wasowska K
    Cancer Sci; 2019 Jun; 110(6):1931-1946. PubMed ID: 30974024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias.
    Delgado-Martin C; Meyer LK; Huang BJ; Shimano KA; Zinter MS; Nguyen JV; Smith GA; Taunton J; Winter SS; Roderick JR; Kelliher MA; Horton TM; Wood BL; Teachey DT; Hermiston ML
    Leukemia; 2017 Dec; 31(12):2568-2576. PubMed ID: 28484265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia.
    Porcu M; Kleppe M; Gianfelici V; Geerdens E; De Keersmaecker K; Tartaglia M; Foà R; Soulier J; Cauwelier B; Uyttebroeck A; Macintyre E; Vandenberghe P; Asnafi V; Cools J
    Blood; 2012 May; 119(19):4476-9. PubMed ID: 22438252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prognostic analysis of patients with mutations in the JAK/STAT signaling pathway in adult acute lymphoblastic leukemia].
    Fan WJ; Xu TT; Guo JJ; Li YF; Jiang ZX
    Zhonghua Xue Ye Xue Za Zhi; 2021 Jul; 42(7):594-597. PubMed ID: 34455748
    [No Abstract]   [Full Text] [Related]  

  • 13. Interleukin-7 receptor-α gene mutations are not detected in adult T-cell acute lymphoblastic leukemia.
    Rozovski U; Li P; Harris D; Ohanian M; Kantarjian H; Estrov Z
    Cancer Med; 2014 Jun; 3(3):550-4. PubMed ID: 24678068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of EZH2, NOTCH1, IL7R, and PHF6 Mutations in Adult T-cell Acute Lymphoblastic Leukemia.
    Zhou X; Gu Y; Han Q; Soliman M; Song C; Ge Z
    Turk J Haematol; 2017 Dec; 34(4):366-368. PubMed ID: 28747286
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia.
    Noronha EP; Andrade FG; Zampier C; de Andrade CF; Terra-Granado E; Pombo-de-Oliveira MS;
    Blood Cells Mol Dis; 2016 Mar; 57():74-80. PubMed ID: 26852660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOCS3 deregulation contributes to aberrant activation of the JAK/STAT pathway in precursor T-cell neoplasms.
    Lahera A; López-Nieva P; Alarcón H; Marín-Rubio JL; Cobos-Fernández MÁ; Fernández-Navarro P; Fernández AF; Vela-Martín L; Sastre I; Ruiz-García S; Llamas P; López-Lorenzo JL; Cornago J; Santos J; Fernández-Piqueras J; Villa-Morales M
    Br J Haematol; 2023 May; 201(4):718-724. PubMed ID: 36786170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High PIM1 expression is a biomarker of T-cell acute lymphoblastic leukemia with JAK/STAT activation or t(6;7)(p21;q34)/TRB@-PIM1 rearrangement.
    La Starza R; Messina M; Gianfelici V; Pierini V; Matteucci C; Pierini T; Limongi MZ; Vitale A; Roti G; Chiaretti S; Foà R; Mecucci C
    Leukemia; 2018 Aug; 32(8):1807-1810. PubMed ID: 29479063
    [No Abstract]   [Full Text] [Related]  

  • 18. Targeting dual oncogenic machineries driven by TAL1 and PI3K-AKT pathways in T-cell acute lymphoblastic leukemia.
    Lim FQ; Chan AS; Yokomori R; Huang XZ; Theardy MS; Yeoh AEJ; Tan SH; Sanda T
    Haematologica; 2023 Feb; 108(2):367-381. PubMed ID: 36073513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the JAK/STAT Pathway in T Cell Lymphoproliferative Disorders.
    Shouse G; Nikolaenko L
    Curr Hematol Malig Rep; 2019 Dec; 14(6):570-576. PubMed ID: 31741284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential.
    Treanor LM; Zhou S; Janke L; Churchman ML; Ma Z; Lu T; Chen SC; Mullighan CG; Sorrentino BP
    J Exp Med; 2014 Apr; 211(4):701-13. PubMed ID: 24687960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.