BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30188577)

  • 1. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions.
    Ziyi X; Taotao F; Chunying Z; Shaokun J; Youguang M; Kai W; Guangsheng L
    Electrophoresis; 2019 Feb; 40(3):376-387. PubMed ID: 30188577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble dispenser in microfluidic devices.
    Cubaud T; Tatineni M; Zhong X; Ho CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037302. PubMed ID: 16241625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels.
    Zhang C; Zhang X; Li Q; Wu L
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of bubble breakup at a T junction.
    Lu Y; Fu T; Zhu C; Ma Y; Li HZ
    Phys Rev E; 2016 Feb; 93(2):022802. PubMed ID: 26986389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices.
    Lochovsky C; Yasotharan S; Günther A
    Lab Chip; 2012 Feb; 12(3):595-601. PubMed ID: 22159026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering microfluidic bubble trains at a symmetric junction.
    Parthiban P; Khan SA
    Lab Chip; 2012 Feb; 12(3):582-8. PubMed ID: 22051610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of tandem bubble interaction in a microfluidic channel.
    Yuan F; Sankin G; Zhong P
    J Acoust Soc Am; 2011 Nov; 130(5):3339-46. PubMed ID: 22088007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble-induced damping in displacement-driven microfluidic flows.
    Lee J; Rahman F; Laoui T; Karnik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026301. PubMed ID: 23005848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the channel geometry on the bubble pinch-off in flow-focusing devices.
    Dollet B; van Hoeve W; Raven JP; Marmottant P; Versluis M
    Phys Rev Lett; 2008 Jan; 100(3):034504. PubMed ID: 18232987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.
    Parhizkar M; Stride E; Edirisinghe M
    Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bubble-based microfluidic gas sensor for gas chromatographs.
    Bulbul A; Kim H
    Lab Chip; 2015 Jan; 15(1):94-104. PubMed ID: 25350655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation.
    Vecchiolla D; Giri V; Biswal SL
    Soft Matter; 2018 Nov; 14(46):9312-9325. PubMed ID: 30289417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.
    Wang B; Socolofsky SA; Lai CCK; Adams EE; Boufadel MC
    Mar Pollut Bull; 2018 Jun; 131(Pt A):72-86. PubMed ID: 29886999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bubble gate for in-plane flow control.
    Oskooei A; Abolhasani M; Günther A
    Lab Chip; 2013 Jul; 13(13):2519-27. PubMed ID: 23670058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
    Jeong HH; Yadavali S; Issadore D; Lee D
    Lab Chip; 2017 Jul; 17(15):2667-2673. PubMed ID: 28702573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surface spectroscopy study of a Pseudomonas fluorescens biofilm in the presence of an immobilized air bubble.
    Pousti M; Lefèvre T; Amirdehi MA; Greener J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117163. PubMed ID: 31177008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.