These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 30188622)

  • 1. CHANGES IN ERYTHROCYTE CA2+-ATPASE ACTIVITY UNDER PEG-1500 AND LOW TEMPERATURE INFLUENCE.
    Zemlianskykh NG; Babijchuk LA
    Tsitologiia; 2016; 58(12):964-70. PubMed ID: 30188622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of human erythrocyte Ca2+-ATPase activity by glycerol: the role of calmodulin.
    Zemlyanskikh NG; Kofanova OA
    Biochemistry (Mosc); 2006 Aug; 71(8):900-5. PubMed ID: 16978154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intracellular free calcium content increase in the erythrocytes treated with the cryoprotective medium based on polyethylene glycol 1500 (PEG-1500)].
    Kucherenko IuV
    Ukr Biokhim Zh (1999); 2008; 80(3):124-30. PubMed ID: 18959037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, characterization, and reconstitution of the Ca2+-transport system (high-affinity Ca2+, Mg2+-ATPase) of the human erythrocyte membrane.
    Gietzen K; Konrad R; Tejcka M; Fleischer S; Wolf HU
    Acta Biol Med Ger; 1981; 40(4-5):443-56. PubMed ID: 6118989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of (Ca2+, Mg2+)-ATPase in human erythrocytes dependent on calcium and calmodulin.
    Scharff O
    Acta Biol Med Ger; 1981; 40(4-5):457-63. PubMed ID: 6118990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effectiveness of the cryoprotective effect of glycerol and polyethylene glycol on plasma membranes].
    Riazantsev VV; Gulevskiĭ AK
    Ukr Biokhim Zh (1978); 1987; 59(5):97-9. PubMed ID: 3686703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in erythrocyte membrane-cytoskeleton complex, induced by dimethyl sulfoxide, polyethylene glycol, and low temperature].
    Zemlianskikh NG; Denisova ON
    Biofizika; 2009; 54(4):693-703. PubMed ID: 19795792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHANGES IN ERYTHROCYTE SURFACE MARKER CD44 DURING HYPOTHERMIC AND LOW TEMPERATURE STORAGE.
    Zemlianskykh NG; Babijchuk LA
    Fiziol Zh (1994); 2016; 62(2):94-102. PubMed ID: 29537231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of the role of endogenous regulators in the activation of Ca-ATPase in erythrocyte membranes].
    Petruniaka VV; Severina EP; Orlov SN; Bezlepkina TA; Paniushkina EA
    Biokhimiia; 1989 Jun; 54(6):974-9. PubMed ID: 2528995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular calcium homeostasis in Leishmania mexicana. Identification and characterization of a plasma membrane calmodulin-dependent Ca(2+)-ATPase.
    Benaim G; Cervino V; Hermoso T; Felibert P; Laurentin A
    Biol Res; 1993; 26(1-2):141-50. PubMed ID: 7670527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte calcium-stimulated, magnesium-activated adenosine 5'-triphosphatase activity in essential hypertension.
    Adeoya AS; Bing RF; Norman RI
    J Hypertens; 1992 Jul; 10(7):651-6. PubMed ID: 1321192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of Ca2+ influx in human erythrocytes in isotonic polyethylene (glycol) 1500 (PEG-1500) and sucrose media.
    Kucherenko YV; Bernhardt I
    Ukr Biokhim Zh (1999); 2006; 78(6):46-52. PubMed ID: 17494318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium and sodium transport processes in patients with cystic fibrosis. I. A specific decrease in Mg2+-dependent, Ca2+-adenosine triphosphatase activity in erythrocyte membranes from cystic fibrosis patients.
    Katz S
    Pediatr Res; 1978 Nov; 12(11):1033-8. PubMed ID: 214742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEVELOPMENT OF A MODEL TO INVESTIGATE RED BLOOD CELL SURFACE CHARACTERISTICS AFTER CRYOPRESERVATION.
    Gordiyenko OI; Anikieieva MO; Rozanova SL; Kovalenko SY; Kovalenkol IF; Gordiyenko EO
    Cryo Letters; 2015; 36(3):221-6. PubMed ID: 26510341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The erythrocyte calcium pump is inhibited by non-enzymic glycation: studies in situ and with the purified enzyme.
    González Flecha FL; Castello PR; Caride AJ; Gagliardino JJ; Rossi JP
    Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):369-75. PubMed ID: 8393658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glucose on the activity of erythrocyte membrane Ca2+ATPase in subjects with normal and impaired glucose tolerance.
    Bilgin R; Tükel SS
    Biochem Mol Biol Int; 1996 Jun; 39(3):547-52. PubMed ID: 8828806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pentoxifylline on the plasma membrane Ca2+ ATPase in age-separated rat and human erythrocytes.
    Seidler NW; Swislocki NI
    J Clin Pharmacol; 1992 Apr; 32(4):332-37. PubMed ID: 1533232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the purified Ca2+, Mg2+-ATPase from human erythrocytes with phospholipids and calmodulin.
    Niggli V; Carafoli E
    Acta Biol Med Ger; 1981; 40(4-5):437-42. PubMed ID: 6118988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of phenylglyoxal with the human erythrocyte (Ca2+ + Mg2+)-ATPase. Evidence for the presence of an essential arginyl residue.
    Raess BU; Record DM; Tunnicliff G
    Mol Pharmacol; 1985 Apr; 27(4):444-50. PubMed ID: 3157046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal analysis of the plasma membrane Ca2+-ATPase.
    Santiago-García J; Delgado-Coello BA; Mas-Oliva J
    Mol Cell Biochem; 2000 Jun; 209(1-2):105-12. PubMed ID: 10942207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.