BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30188711)

  • 1. Effects of Intense Electric Fields on the Double Proton Transfer in the Watson-Crick Guanine-Cytosine Base Pair.
    Arabi AA; Matta CF
    J Phys Chem B; 2018 Sep; 122(37):8631-8641. PubMed ID: 30188711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric-field induced mutation of DNA: a theoretical investigation of the GC base pair.
    Cerón-Carrasco JP; Jacquemin D
    Phys Chem Chem Phys; 2013 Apr; 15(13):4548-53. PubMed ID: 23338206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of external electric fields on proton transfer tautomerism in the guanine-cytosine base pair.
    Gheorghiu A; Coveney PV; Arabi AA
    Phys Chem Chem Phys; 2021 Mar; 23(10):6252-6265. PubMed ID: 33735350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.
    Lin Y; Wang H; Gao S; Schaefer HF
    J Phys Chem B; 2011 Oct; 115(40):11746-56. PubMed ID: 21888406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.
    Gupta A; Jaeger HM; Compaan KR; Schaefer HF
    J Phys Chem B; 2012 May; 116(19):5579-87. PubMed ID: 22530702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair.
    Zoete V; Meuwly M
    J Chem Phys; 2004 Sep; 121(9):4377-88. PubMed ID: 15332989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced electron detachment and proton transfer: the proposal for alternative path of formation of triplet states of guanine (G) and cytosine (C) pair.
    Gu J; Wang J; Leszczynski J
    J Phys Chem B; 2015 Feb; 119(6):2454-8. PubMed ID: 25340559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton Transfer in Guanine-Cytosine Base Pairs in B-DNA.
    Soler-Polo D; Mendieta-Moreno JI; Trabada DG; Mendieta J; Ortega J
    J Chem Theory Comput; 2019 Dec; 15(12):6984-6991. PubMed ID: 31665604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches.
    Brovarets' OO; Hovorun DM
    J Comput Chem; 2013 Nov; 34(30):2577-90. PubMed ID: 23955922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-transfer in hydrogenated guanine-cytosine trimer neutral species, cations, and anions embedded in B-form DNA.
    Lin Y; Wang H; Wu Y; Gao S; Schaefer HF
    Phys Chem Chem Phys; 2014 Apr; 16(14):6717-25. PubMed ID: 24589940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine-cytosine base pair radical anion.
    Chen HY; Yeh SW; Hsu SC; Kao CL; Dong TY
    Phys Chem Chem Phys; 2011 Feb; 13(7):2674-81. PubMed ID: 21152551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prediction of intermolecular proton-transfer of guanine-cytosine base pair under the influence of fragments from decomposed MOFs.
    Han Y; Li D
    J Mol Model; 2019 Jan; 25(2):40. PubMed ID: 30666421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular proton transfer in microhydrated guanine-cytosine base pairs: a new mechanism for spontaneous mutation in DNA.
    Cerón-Carrasco JP; Requena A; Zúñiga J; Michaux C; Perpète EA; Jacquemin D
    J Phys Chem A; 2009 Oct; 113(39):10549-56. PubMed ID: 19736955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].
    Brovarets' OO; Hovorun DM
    Ukr Biokhim Zh (1999); 2010; 82(3):55-60. PubMed ID: 21328878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hydration on proton transfer in the guanine-cytosine radical cation (G*+-C) base pair: a density functional theory study.
    Kumar A; Sevilla MD
    J Phys Chem B; 2009 Aug; 113(33):11359-61. PubMed ID: 19485319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis.
    Brovarets OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(1):127-54. PubMed ID: 23383960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of OH radical addition on proton transfer in the guanine-cytosine base pair.
    Zhang Rb; Eriksson LA
    J Phys Chem B; 2007 Jun; 111(23):6571-6. PubMed ID: 17506547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenine-thymine tautomerization under the influence of strong homogeneous electric fields.
    Arabi AA; Matta CF
    Phys Chem Chem Phys; 2018 May; 20(18):12406-12412. PubMed ID: 29693088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.