These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials. Cramer NB; Couch CL; Schreck KM; Carioscia JA; Boulden JE; Stansbury JW; Bowman CN Dent Mater; 2010 Jan; 26(1):21-8. PubMed ID: 19781757 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative. Wang X; Gao G; Song HB; Zhang X; Stansbury JW; Bowman CN Dent Mater; 2021 Oct; 37(10):1592-1600. PubMed ID: 34456051 [TBL] [Abstract][Full Text] [Related]
7. Dental Restorative Materials Based on Thiol-Michael Photopolymerization. Huang S; Podgórski M; Zhang X; Sinha J; Claudino M; Stansbury JW; Bowman CN J Dent Res; 2018 May; 97(5):530-536. PubMed ID: 29439642 [TBL] [Abstract][Full Text] [Related]
9. Dynamic covalent chemistry (DCC) in dental restorative materials: Implementation of a DCC-based adaptive interface (AI) at the resin-filler interface for improved performance. Sowan N; Dobson A; Podgorski M; Bowman CN Dent Mater; 2020 Jan; 36(1):53-59. PubMed ID: 31810600 [TBL] [Abstract][Full Text] [Related]
10. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Gonçalves F; Kawano Y; Pfeifer C; Stansbury JW; Braga RR Eur J Oral Sci; 2009 Aug; 117(4):442-6. PubMed ID: 19627357 [TBL] [Abstract][Full Text] [Related]
11. Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer. Park HY; Kloxin CJ; Abuelyaman AS; Oxman JD; Bowman CN Dent Mater; 2012 Nov; 28(11):1113-9. PubMed ID: 22995639 [TBL] [Abstract][Full Text] [Related]
12. High performance dental resin composites with hydrolytically stable monomers. Wang X; Huyang G; Palagummi SV; Liu X; Skrtic D; Beauchamp C; Bowen R; Sun J Dent Mater; 2018 Feb; 34(2):228-237. PubMed ID: 29113700 [TBL] [Abstract][Full Text] [Related]
13. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Amirouche-Korichi A; Mouzali M; Watts DC Dent Mater; 2009 Nov; 25(11):1411-8. PubMed ID: 19683808 [TBL] [Abstract][Full Text] [Related]
14. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Chen L; Yu Q; Wang Y; Li H Dent Mater; 2011 Nov; 27(11):1187-95. PubMed ID: 21937098 [TBL] [Abstract][Full Text] [Related]
15. Effect of TEGDMA/BisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites. Feilzer AJ; Dauvillier BS J Dent Res; 2003 Oct; 82(10):824-8. PubMed ID: 14514764 [TBL] [Abstract][Full Text] [Related]
16. Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios. Randolph LD; Steinhaus J; Möginger B; Gallez B; Stansbury J; Palin WM; Leloup G; Leprince JG Dent Mater; 2016 Feb; 32(2):136-48. PubMed ID: 26719130 [TBL] [Abstract][Full Text] [Related]