BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30189280)

  • 1. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Lu KY; Mi FL
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2335-2345. PubMed ID: 30189280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Mi FL
    Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.
    Shakir M; Jolly R; Khan MS; Rauf A; Kazmi S
    Int J Biol Macromol; 2016 Dec; 93(Pt A):276-289. PubMed ID: 27543347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering.
    Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T
    Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering.
    Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y
    Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering.
    Venkatesan J; Pallela R; Bhatnagar I; Kim SK
    Int J Biol Macromol; 2012 Dec; 51(5):1033-42. PubMed ID: 22947451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering.
    Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q
    Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.
    Pangon A; Saesoo S; Saengkrit N; Ruktanonchai U; Intasanta V
    Carbohydr Polym; 2016 Jun; 144():419-27. PubMed ID: 27083834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering.
    Kavya KC; Jayakumar R; Nair S; Chennazhi KP
    Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering.
    Nikpour P; Salimi-Kenari H; Fahimipour F; Rabiee SM; Imani M; Dashtimoghadam E; Tayebi L
    Carbohydr Polym; 2018 Jun; 190():281-294. PubMed ID: 29628249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of chitin-chitosan/nano ZrO(2) composite scaffolds for tissue engineering applications.
    Jayakumar R; Ramachandran R; Sudheesh Kumar PT; Divyarani VV; Srinivasan S; Chennazhi KP; Tamura H; Nair SV
    Int J Biol Macromol; 2011 Oct; 49(3):274-80. PubMed ID: 21575656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application.
    Bhowmick A; Pramanik N; Jana P; Mitra T; Gnanamani A; Das M; Kundu PP
    Int J Biol Macromol; 2017 Feb; 95():348-356. PubMed ID: 27865958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.