BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 3018933)

  • 41. Differential effects of oxidizing agents on human plasma alpha 1-proteinase inhibitor and human neutrophil myeloperoxidase.
    Matheson NR; Travis J
    Biochemistry; 1985 Apr; 24(8):1941-5. PubMed ID: 2990544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive Oxygen Species and Neutrophil Function.
    Winterbourn CC; Kettle AJ; Hampton MB
    Annu Rev Biochem; 2016 Jun; 85():765-92. PubMed ID: 27050287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione.
    Ximenes VF; Maghzal GJ; Turner R; Kato Y; Winterbourn CC; Kettle AJ
    Biochem J; 2009 Dec; 425(1):285-93. PubMed ID: 19828014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis.
    Vissers MC; Carr AC; Chapman AL
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):131-8. PubMed ID: 9461501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1.
    Klebanoff SJ; Coombs RW
    AIDS Res Hum Retroviruses; 1996 Jan; 12(1):25-9. PubMed ID: 8825615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate.
    Li Z; Chen Z; Xiang Y; Ling L; Fang J; Shang C; Dionysiou DD
    Water Res; 2015 Oct; 83():132-40. PubMed ID: 26143270
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro.
    Papanicolaou M; He P; Rutting S; Ammit A; Xenaki D; van Reyk D; Oliver BG
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943857
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human eosinophilic peroxidase: biochemical characterization.
    Migler R; DeChatelet LR
    Biochem Med; 1978 Feb; 19(1):16-26. PubMed ID: 23771
    [No Abstract]   [Full Text] [Related]  

  • 49. Cross-linking methionine and amine residues with reactive halogen species.
    Ronsein GE; Winterbourn CC; Di Mascio P; Kettle AJ
    Free Radic Biol Med; 2014 May; 70():278-87. PubMed ID: 24486343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species.
    MacPherson JC; Comhair SA; Erzurum SC; Klein DF; Lipscomb MF; Kavuru MS; Samoszuk MK; Hazen SL
    J Immunol; 2001 May; 166(9):5763-72. PubMed ID: 11313420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A myeloperoxidase-specific assay based upon bromide-dependent chemiluminescence of luminol.
    Haqqani AS; Sandhu JK; Birnboim HC
    Anal Biochem; 1999 Aug; 273(1):126-32. PubMed ID: 10452808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-electron reduction of N-chlorinated and N-brominated species is a source of radicals and bromine atom formation.
    Pattison DI; O'Reilly RJ; Skaff O; Radom L; Anderson RF; Davies MJ
    Chem Res Toxicol; 2011 Mar; 24(3):371-82. PubMed ID: 21344936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of biomaterials by phagocyte-derived oxidants.
    Sutherland K; Mahoney JR; Coury AJ; Eaton JW
    J Clin Invest; 1993 Nov; 92(5):2360-7. PubMed ID: 8227352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine.
    Meister Winter GE; Butler A
    Biochemistry; 1996 Sep; 35(36):11805-11. PubMed ID: 8794762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eosinophils increase lung microvascular permeability via the peroxidase-hydrogen peroxide-halide system. Bronchoconstriction and vasoconstriction unaffected by eosinophil peroxidase inhibition.
    Yoshikawa S; Kayes SG; Parker JC
    Am Rev Respir Dis; 1993 Apr; 147(4):914-20. PubMed ID: 8385432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study.
    Skaff O; Pattison DI; Davies MJ
    Biochemistry; 2008 Aug; 47(31):8237-45. PubMed ID: 18605737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the peroxidase in human eosinophils.
    Wever R; Hamers MN; de Graaf CJ; Weening RS; Roos D
    Adv Exp Med Biol; 1982; 141():501-9. PubMed ID: 7090924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.
    Lloyd MM; Grima MA; Rayner BS; Hadfield KA; Davies MJ; Hawkins CL
    Free Radic Biol Med; 2013 Dec; 65():1352-1362. PubMed ID: 24120969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Cytochemical semiquantitative evaluation of peroxidase activity in blood cells. Method].
    Dallegri F; Patrone F; Parodi M; Mela GS; Traverso G
    Boll Soc Ital Biol Sper; 1977 Feb; 53(4):282-4. PubMed ID: 199214
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.