These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30189348)

  • 1. The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies.
    Verkuijl SA; Rots MG
    Curr Opin Biotechnol; 2019 Feb; 55():68-73. PubMed ID: 30189348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.
    Isaac RS; Jiang F; Doudna JA; Lim WA; Narlikar GJ; Almeida R
    Elife; 2016 Apr; 5():. PubMed ID: 27130520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.
    Daer RM; Cutts JP; Brafman DA; Haynes KA
    ACS Synth Biol; 2017 Mar; 6(3):428-438. PubMed ID: 27783893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo.
    Yarrington RM; Verma S; Schwartz S; Trautman JK; Carroll D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9351-9358. PubMed ID: 30201707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair.
    Kallimasioti-Pazi EM; Thelakkad Chathoth K; Taylor GC; Meynert A; Ballinger T; Kelder MJE; Lalevée S; Sanli I; Feil R; Wood AJ
    PLoS Biol; 2018 Dec; 16(12):e2005595. PubMed ID: 30540740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing.
    Schep R; Trauernicht M; Vergara X; Friskes A; Morris B; Gregoricchio S; Manzo SG; Zwart W; Beijersbergen RL; Medema RH; van Steensel B
    Nucleic Acids Res; 2024 Aug; 52(15):8815-8832. PubMed ID: 38953163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the impact of chromatin conformation on genome editing tools.
    Chen X; Rinsma M; Janssen JM; Liu J; Maggio I; Gonçalves MA
    Nucleic Acids Res; 2016 Jul; 44(13):6482-92. PubMed ID: 27280977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion.
    Vaschetto LM
    Curr Genet; 2018 Apr; 64(2):405-412. PubMed ID: 29032444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator.
    Liu J; Li B; Yang L; Ren N; Xu M; Huang Q
    CRISPR J; 2022 Dec; 5(6):854-867. PubMed ID: 36374245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.