These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30189348)

  • 21. Epigenetic features drastically impact CRISPR-Cas9 efficacy in plants.
    Weiss T; Crisp PA; Rai KM; Song M; Springer NM; Zhang F
    Plant Physiol; 2022 Sep; 190(2):1153-1164. PubMed ID: 35689624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application.
    Minkenberg B; Wheatley M; Yang Y
    Prog Mol Biol Transl Sci; 2017; 149():111-132. PubMed ID: 28712493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas immunity, DNA repair and genome stability.
    Cubbon A; Ivancic-Bace I; Bolt EL
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30209206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of Chromatin Dynamics by Live Cell Microscopy Using CRISPR/Cas9 Gene Editing and ANCHOR Labeling.
    Fok ET; Fanucchi S; Bystricky K; Mhlanga MM
    Methods Mol Biol; 2021; 2157():197-212. PubMed ID: 32820405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of CRISPR-Cas9 genome interrogation in living cells.
    Knight SC; Xie L; Deng W; Guglielmi B; Witkowsky LB; Bosanac L; Zhang ET; El Beheiry M; Masson JB; Dahan M; Liu Z; Doudna JA; Tjian R
    Science; 2015 Nov; 350(6262):823-6. PubMed ID: 26564855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo.
    Liu G; Yin K; Zhang Q; Gao C; Qiu JL
    Genome Biol; 2019 Jul; 20(1):145. PubMed ID: 31349852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disruptive non-disruptive applications of CRISPR/Cas9.
    Schmid-Burgk JL
    Curr Opin Biotechnol; 2017 Dec; 48():203-209. PubMed ID: 28633080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation of CRISPR nucleases for eukaryotic applications.
    Ran FA
    Anal Biochem; 2017 Sep; 532():90-94. PubMed ID: 27984015
    [No Abstract]   [Full Text] [Related]  

  • 35. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.
    Hinz JM; Laughery MF; Wyrick JJ
    Biochemistry; 2015 Dec; 54(48):7063-6. PubMed ID: 26579937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
    Tang L; Gong M; Zhang P
    Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput genetic screens using CRISPR-Cas9 system.
    Kweon J; Kim Y
    Arch Pharm Res; 2018 Sep; 41(9):875-884. PubMed ID: 29637495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.