These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30189393)

  • 1. Mapping radiation distribution on ground based on the measurement using an unmanned aerial vehicle.
    Zhang S; Liu R; Zhao T
    J Environ Radioact; 2018 Oct; 193-194():44-56. PubMed ID: 30189393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing UAV-based radiation sensor systems for aerial surveys.
    Lee C; Kim HR
    J Environ Radioact; 2019 Aug; 204():76-85. PubMed ID: 30986718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies.
    MacFarlane JW; Payton OD; Keatley AC; Scott GP; Pullin H; Crane RA; Smilion M; Popescu I; Curlea V; Scott TB
    J Environ Radioact; 2014 Oct; 136():127-30. PubMed ID: 24949582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of unmanned aerial systems for the mapping of legacy uranium mines.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Scott TB
    J Environ Radioact; 2015 May; 143():135-140. PubMed ID: 25771221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter.
    Sanada Y; Orita T; Torii T
    Appl Radiat Isot; 2016 Dec; 118():308-316. PubMed ID: 27744213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discussion on one algorithm for mapping the radiation distribution on contaminated ground.
    Liu R; Higley K; Liu X
    Health Phys; 2015 Jul; 109(1):25-34. PubMed ID: 26011496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Yamashiki Y; Scott TB
    J Environ Radioact; 2016 Jan; 151 Pt 1():58-63. PubMed ID: 26410790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.
    Sanada Y; Torii T
    J Environ Radioact; 2015 Jan; 139():294-299. PubMed ID: 25053518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RADIATION MONITORING SYSTEM USING UNMANNED AERIAL VEHICELS.
    Lüley J; Čerba Š; Vrban B; Osuský F; Sľuka O
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):337-341. PubMed ID: 31846036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of airborne photogrammetry for the visualisation and assessment of contamination migration arising from a Fukushima waste storage facility.
    Connor DT; Martin PG; Smith NT; Payne L; Hutson C; Payton OD; Yamashiki Y; Scott TB
    Environ Pollut; 2018 Mar; 234():610-619. PubMed ID: 29223818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone.
    Holiaka D; Kato H; Yoschenko V; Onda Y; Igarashi Y; Nanba K; Diachuk P; Holiaka M; Zadorozhniuk R; Kashparov V; Chyzhevskyi I
    J Environ Manage; 2021 Oct; 295():113319. PubMed ID: 34348433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Performance Gamma Spectrometer for Unmanned Systems Based on Off-the-Shelf Components.
    Chierici A; Malizia A; Di Giovanni D; Ciolini R; d'Errico F
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Analysis of Geiger-Müller and Cadmium Zinc Telluride Sensors Envisaging Airborne Radiological Monitoring in NORM Sites.
    Borbinha J; Romanets Y; Teles P; Corisco J; Vaz P; Carvalho D; Brouwer Y; Luís R; Pinto L; Vale A; Ventura R; Areias B; Reis AB; Gonçalves B
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.
    Messinger M; Silman M
    Environ Pollut; 2016 Nov; 218():889-894. PubMed ID: 27522405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study From Chornobyl.
    Connor DT; Wood K; Martin PG; Goren S; Megson-Smith D; Verbelen Y; Chyzhevskyi I; Kirieiev S; Smith NT; Richardson T; Scott TB
    Front Robot AI; 2019; 6():149. PubMed ID: 33501164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.