BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30189549)

  • 1. Silver nanomaterials in the natural environment: An overview of their biosynthesis and kinetic behavior.
    Guo Z; Cui K; Zeng G; Wang J; Guo X
    Sci Total Environ; 2018 Dec; 643():1325-1336. PubMed ID: 30189549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics.
    Afshinnia K; Sikder M; Cai B; Baalousha M
    J Colloid Interface Sci; 2017 Feb; 487():192-200. PubMed ID: 27770683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanomaterials: synthesis and (electro/photo) catalytic applications.
    Sharma RK; Yadav S; Dutta S; Kale HB; Warkad IR; Zbořil R; Varma RS; Gawande MB
    Chem Soc Rev; 2021 Oct; 50(20):11293-11380. PubMed ID: 34661205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of photocatalytic Au-Ag2Te nanomaterials.
    Lin ZH; Shih ZY; Roy P; Chang HT
    Chemistry; 2012 Sep; 18(39):12330-6. PubMed ID: 22907837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology.
    Kim MJ; Shin S
    Food Chem Toxicol; 2014 May; 67():80-6. PubMed ID: 24534065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental behavior of coated NMs: Physicochemical aspects and plant interactions.
    López-Moreno ML; Cedeño-Mattei Y; Bailón-Ruiz SJ; Vazquez-Nuñez E; Hernandez-Viezcas JA; Perales-Pérez OJ; la Rosa G; Peralta-Videa JR; Gardea-Torresdey JL
    J Hazard Mater; 2018 Apr; 347():196-217. PubMed ID: 29331809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages.
    Liang Y; Xie M; Li J; Liu L; Cao Y
    Dose Response; 2019; 17(3):1559325819865713. PubMed ID: 31384242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic characteristics of silver nanoparticles in physiological fluids: toxicological implications.
    Braydich-Stolle LK; Breitner EK; Comfort KK; Schlager JJ; Hussain SM
    Langmuir; 2014 Dec; 30(50):15309-16. PubMed ID: 25496452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant
    Choi Y; Park TJ; Lee DC; Lee SY
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5944-5949. PubMed ID: 29784775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells.
    Setyawati MI; Yuan X; Xie J; Leong DT
    Biomaterials; 2014 Aug; 35(25):6707-15. PubMed ID: 24881025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae.
    Suppi S; Kasemets K; Ivask A; Künnis-Beres K; Sihtmäe M; Kurvet I; Aruoja V; Kahru A
    J Hazard Mater; 2015 Apr; 286():75-84. PubMed ID: 25559861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotoxicity testing of different surface-functionalized SiO
    Haase A; Dommershausen N; Schulz M; Landsiedel R; Reichardt P; Krause BC; Tentschert J; Luch A
    Arch Toxicol; 2017 Dec; 91(12):3991-4007. PubMed ID: 28643002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review.
    Gao J; Zhu Y; Zeng L; Liu X; Yang Y; Zhou Y
    J Environ Manage; 2024 Jun; 361():121289. PubMed ID: 38820797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials in the environment, human exposure pathway, and health effects: A review.
    Malakar A; Kanel SR; Ray C; Snow DD; Nadagouda MN
    Sci Total Environ; 2021 Mar; 759():143470. PubMed ID: 33248790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages.
    Choi Y; Lee SY
    Nat Rev Chem; 2020 Dec; 4(12):638-656. PubMed ID: 37127973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on the important aspects of lipase immobilization on nanomaterials.
    Shuai W; Das RK; Naghdi M; Brar SK; Verma M
    Biotechnol Appl Biochem; 2017 Jul; 64(4):496-508. PubMed ID: 27277552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ionization on the toxicity of silver nanoparticles to Japanese medaka (Oryzias latipes) embryos.
    Lee BC; Kim J; Cho JG; Lee JW; Duong CN; Bae E; Yi J; Eom IC; Choi K; Kim P; Yoon J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):287-93. PubMed ID: 24279620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterials: a review of emerging contaminants with potential health or environmental impact.
    El-Kalliny AS; Abdel-Wahed MS; El-Zahhar AA; Hamza IA; Gad-Allah TA
    Discov Nano; 2023 Apr; 18(1):68. PubMed ID: 37382722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.