These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30189555)

  • 21. Population balance modelling of particle flocculation with attention to aggregate restructuring and permeability.
    Jeldres RI; Concha F; Toledo PG
    Adv Colloid Interface Sci; 2015 Oct; 224():62-71. PubMed ID: 26253811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of 3-dimensional structure and properties of flocculated natural suspended sediment.
    Spencer KL; Wheatland JA; Carr SJ; Manning AJ; Bushby AJ; Gu C; Botto L; Lawrence T
    Water Res; 2022 Aug; 222():118835. PubMed ID: 35914497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Settling velocities and permeabilities of microbial aggregates.
    Li XY; Yuan Y
    Water Res; 2002 Jul; 36(12):3110-20. PubMed ID: 12171410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological and fractal hydrodynamics of aerobic granules.
    Tijani HI; Abdullah N; Yuzir A; Ujang Z
    Bioresour Technol; 2015 Jun; 186():276-285. PubMed ID: 25836036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of fractal dimensions to study the structure of flocs formed in lime softening process.
    Vahedi A; Gorczyca B
    Water Res; 2011 Jan; 45(2):545-56. PubMed ID: 20937512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical and hydrodynamic properties of flocs produced during biological hydrogen production.
    Zhang JJ; Li XY; Oh SE; Logan BE
    Biotechnol Bioeng; 2004 Dec; 88(7):854-60. PubMed ID: 15538742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of fractal structure on settling velocities of flocs].
    Zhong RS; Zhang XH; Xiao F; Li XY
    Huan Jing Ke Xue; 2009 Aug; 30(8):2353-7. PubMed ID: 19799300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.
    Sandaa RA; Pree B; Larsen A; Våge S; Töpper B; Töpper JP; Thyrhaug R; Thingstad TF
    Viruses; 2017 Aug; 9(9):. PubMed ID: 28832530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flocculation control study based on fractal theory.
    Chang Y; Liu QJ; Zhang JS
    J Zhejiang Univ Sci B; 2005 Oct; 6(10):1038-44. PubMed ID: 16187420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse?
    Carrillo P; Villar-Argaiz M; Medina-Sánchez JM
    Microb Ecol; 2008 Aug; 56(2):350-63. PubMed ID: 18165873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breakage rate of colloidal aggregates in shear flow through stokesian dynamics.
    Harshe YM; Lattuada M
    Langmuir; 2012 Jan; 28(1):283-92. PubMed ID: 22122803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Floc compaction during ballasted aggregation.
    Sieliechi J; Lartiges B; Skali-Lami S; Kayem J; Kamga R
    Water Res; 2016 Nov; 105():361-369. PubMed ID: 27643750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Storm-Influenced Suspended Particulate Matter Flocculation Using a Tide-Wave-Combined Biomineral Model.
    Chen P; Yu JCS; Fettweis M
    Water Environ Res; 2018 Mar; 90(3):244-257. PubMed ID: 29521621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Floc morphology and size distributions of cohesive sediment in steady-state flow.
    Stone M; Krishnappan BG
    Water Res; 2003 Jun; 37(11):2739-47. PubMed ID: 12753852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractal structure of asphaltene aggregates.
    Rahmani NH; Dabros T; Masliyah JH
    J Colloid Interface Sci; 2005 May; 285(2):599-608. PubMed ID: 15837477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kaolinite flocculation structure.
    Zbik MS; Smart RS; Morris GE
    J Colloid Interface Sci; 2008 Dec; 328(1):73-80. PubMed ID: 18834991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering.
    Chekli L; Zhao YX; Tijing LD; Phuntsho S; Donner E; Lombi E; Gao BY; Shon HK
    J Hazard Mater; 2015 Mar; 284():190-200. PubMed ID: 25463233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates.
    Harshe YM; Lattuada M; Soos M
    Langmuir; 2011 May; 27(10):5739-52. PubMed ID: 21506535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of global velocity gradient on the character and filterability of aggregates formed during the coagulation/flocculation process.
    Pivokonsky M; Bubakova P; Pivokonska L; Hnatukova P
    Environ Technol; 2011; 32(11-12):1355-66. PubMed ID: 21970177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the kinetics of aggregate breakage using improved breakage kernel.
    Feng X; Xiao-yan L
    Water Sci Technol; 2008; 57(1):151-7. PubMed ID: 18192753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.