These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30189574)

  • 1. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries.
    Üçtuğ FG; Azapagic A
    Sci Total Environ; 2018 Dec; 643():1579-1589. PubMed ID: 30189574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions.
    Uctug FG; Azapagic A
    Sci Total Environ; 2018 May; 622-623():1202-1216. PubMed ID: 29890588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.
    Bilich A; Langham K; Geyer R; Goyal L; Hansen J; Krishnan A; Bergesen J; Sinha P
    Environ Sci Technol; 2017 Jan; 51(2):1043-1052. PubMed ID: 28009505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Warming Impacts of Residential Electricity Consumption: Agent-Based Modeling of Rooftop Solar Panel Adoption in Los Angeles County, California.
    Grant CA; Hicks AL
    Integr Environ Assess Manag; 2020 Nov; 16(6):1008-1018. PubMed ID: 32678946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage.
    Kamath D; Arsenault R; Kim HC; Anctil A
    Environ Sci Technol; 2020 Jun; 54(11):6878-6887. PubMed ID: 32343124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techno-Economic Comparison of Stationary Storage and Battery-Electric Buses for Mitigating Solar Intermittency.
    Ahmed A; Massier T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems.
    Ren M; Mitchell CR; Mo W
    Sci Total Environ; 2020 Jun; 722():137932. PubMed ID: 32208273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decentralized energy in flexible energy system: Life cycle environmental impacts in Belgium.
    Huber D; Costa D; Felice A; Valkering P; Coosemans T; Messagie M
    Sci Total Environ; 2023 Aug; 886():163882. PubMed ID: 37160185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous changes in electricity consumption patterns of residential distributed solar consumers due to battery storage adoption.
    Qiu YL; Xing B; Patwardhan A; Hultman N; Zhang H
    iScience; 2022 Jun; 25(6):104352. PubMed ID: 35601916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the environmental sustainability of electricity generation in Chile.
    Gaete-Morales C; Gallego-Schmid A; Stamford L; Azapagic A
    Sci Total Environ; 2018 Sep; 636():1155-1170. PubMed ID: 29913578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications: System Configuration and Viability.
    Bagalini V; Zhao BY; Wang RZ; Desideri U
    Research (Wash D C); 2019; 2019():3838603. PubMed ID: 31922133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for Frequency Regulation.
    Ryan NA; Lin Y; Mitchell-Ward N; Mathieu JL; Johnson JX
    Environ Sci Technol; 2018 Sep; 52(17):10163-10174. PubMed ID: 30118212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with Batteries.
    Porzio J; Wolfson D; Auffhammer M; Scown CD
    Environ Sci Technol; 2023 Mar; 57(12):4992-5002. PubMed ID: 36917208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revitalizing operational reliability of the electrical energy system in Libya: Feasibility analysis of solar generation in local communities.
    Almaktar M; Elbreki AM; Shaaban M
    J Clean Prod; 2021 Jan; 279():123647. PubMed ID: 32834572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated financial and environmental evaluation framework to optimize residential photovoltaic solar systems in Australia from recession uncertainties.
    Tushar Q; Zhang G; Giustozzi F; Bhuiyan MA; Hou L; Navaratnam S
    J Environ Manage; 2023 Nov; 346():119002. PubMed ID: 37734211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-life battery systems for affordable energy access in Kenyan primary schools.
    Kebir N; Leonard A; Downey M; Jones B; Rabie K; Bhagavathy SM; Hirmer SA
    Sci Rep; 2023 Jan; 13(1):1374. PubMed ID: 36697469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hourly marginal electricity mixes and their relevance for assessing the environmental performance of installations with variable load or power.
    Peters JF; Iribarren D; Juez Martel P; Burguillo M
    Sci Total Environ; 2022 Oct; 843():156963. PubMed ID: 35764158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition.
    Stamford L; Azapagic A
    Sci Total Environ; 2019 Oct; 688():1092-1101. PubMed ID: 31726540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.