These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30189574)

  • 21. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications.
    Kamath D; Shukla S; Arsenault R; Kim HC; Anctil A
    Waste Manag; 2020 Jul; 113():497-507. PubMed ID: 32513441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative life cycle assessment of battery storage systems for stationary applications.
    Hiremath M; Derendorf K; Vogt T
    Environ Sci Technol; 2015 Apr; 49(8):4825-33. PubMed ID: 25798660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental analysis of a nano-grid: A Life Cycle Assessment.
    Rossi F; Parisi ML; Maranghi S; Basosi R; Sinicropi A
    Sci Total Environ; 2020 Jan; 700():134814. PubMed ID: 31693959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upgraded metallurgical grade silicon and polysilicon for solar electricity production: A comparative life cycle assessment.
    Méndez L; Forniés E; Garrain D; Pérez Vázquez A; Souto A; Vlasenko T
    Sci Total Environ; 2021 Oct; 789():147969. PubMed ID: 34082204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management.
    Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M
    Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental and economic optima of solar home systems design: A combined LCA and LCC approach.
    Rossi F; Heleno M; Basosi R; Sinicropi A
    Sci Total Environ; 2020 Nov; 744():140569. PubMed ID: 32687999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental assessment of optimized renewable energy-based microgrids integrated desalination plant: considering human health, ecosystem quality, climate change, and resources.
    Kiehbadroudinezhad M; Merabet A; Hosseinzadeh-Bandbafha H; Ghenai C
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29888-29908. PubMed ID: 36418817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.
    Majeau-Bettez G; Hawkins TR; Strømman AH
    Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental trade-offs and externalities of electrochemical-based batteries: Quantitative analysis between lithium-ion and vanadium redox flow units.
    Tsai WS; Huang C; Huang CC; Yang CC; Lee M
    J Environ Manage; 2023 Jan; 326(Pt B):116807. PubMed ID: 36436249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Techno-economic assessment of solar energy coupling with large-scale desalination plant: The case of Morocco.
    Kettani M; Bandelier P
    Desalination; 2020 Nov; 494():114627. PubMed ID: 32863401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Internet of things based smart energy management in a vanadium redox flow battery storage integrated bio-solar microgrid.
    Samanta H; Bhattacharjee A; Pramanik M; Das A; Bhattacharya KD; Saha H
    J Energy Storage; 2020 Dec; 32():101967. PubMed ID: 33083501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
    Li N; Wang Y; Tang D; Zhou H
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solar electricity supply isolines of generation capacity and storage.
    Grossmann W; Grossmann I; Steininger KW
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3663-8. PubMed ID: 25755261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Off grid PV/Diesel/Wind/Batteries energy system options for the electrification of isolated regions of Chad.
    Kelly E; Medjo Nouadje BA; Tonsie Djiela RH; Kapen PT; Tchuen G; Tchinda R
    Heliyon; 2023 Mar; 9(3):e13906. PubMed ID: 36895370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life Cycle Inventory datasets for nano-grid configurations.
    Rossi F; Parisi ML; Maranghi S; Basosi R; Sinicropi A
    Data Brief; 2020 Feb; 28():104895. PubMed ID: 31872010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery.
    Nishijima M; Ootani T; Kamimura Y; Sueki T; Esaki S; Murai S; Fujita K; Tanaka K; Ohira K; Koyama Y; Tanaka I
    Nat Commun; 2014 Aug; 5():4553. PubMed ID: 25080933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy self-sufficient households with photovoltaics and electric vehicles are feasible in temperate climate.
    Gstöhl U; Pfenninger S
    PLoS One; 2020; 15(3):e0227368. PubMed ID: 32130215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.