These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30189687)

  • 21. Dynamic combinatorial donor-acceptor catenanes in water: access to unconventional and unexpected structures.
    Au-Yeung HY; Pantoş GD; Sanders JK
    J Org Chem; 2011 Mar; 76(5):1257-68. PubMed ID: 21302944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programming a topologically constrained DNA nanostructure into a sensor.
    Liu M; Zhang Q; Li Z; Gu J; Brennan JD; Li Y
    Nat Commun; 2016 Jun; 7():12074. PubMed ID: 27337657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biopolymers and the fellowship of DNA rings.
    Wang JC
    Biopolymers; 2013 Dec; 99(12):916-22. PubMed ID: 23532943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switchable Reconfiguration of a Seven-Ring Interlocked DNA Catenane Nanostructure.
    Lu CH; Cecconello A; Qi XJ; Wu N; Jester SS; Famulok M; Matthies M; Schmidt TL; Willner I
    Nano Lett; 2015 Oct; 15(10):7133-7. PubMed ID: 26360345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembly of Catenanes from Lasso Peptides.
    Allen CD; Link AJ
    J Am Chem Soc; 2016 Nov; 138(43):14214-14217. PubMed ID: 27768305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular catenation via metal-directed self-assembly and pi-donor/pi-acceptor interactions: efficient one-pot synthesis, characterization, and crystal structures of [3]catenanes based on Pd or Pt dinuclear metallocycles.
    Blanco V; Chas M; Abella D; Peinador C; Quintela JM
    J Am Chem Soc; 2007 Nov; 129(45):13978-86. PubMed ID: 17956095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective synthesis of [2]- and [3]catenane tuned by ring size and concentration.
    Iwamoto H; Takizawa W; Itoh K; Hagiwara T; Tayama E; Hasegawa E; Haino T
    J Org Chem; 2013 Jun; 78(11):5205-17. PubMed ID: 23647354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotaxane and catenane host structures for sensing charged guest species.
    Langton MJ; Beer PD
    Acc Chem Res; 2014 Jul; 47(7):1935-49. PubMed ID: 24708030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.
    Fahrenbach AC; Bruns CJ; Li H; Trabolsi A; Coskun A; Stoddart JF
    Acc Chem Res; 2014 Feb; 47(2):482-93. PubMed ID: 24341283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topology- and linking number-controlled synthesis of a closed 3 link chain of single-stranded DNA.
    Li Q; Wu G; Yang Y; An R; Li J; Liang X; Komiyama M
    Chem Commun (Camb); 2018 Sep; 54(72):10156-10159. PubMed ID: 30132764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic combinatorial discovery of a [2]-catenane and its guest-induced conversion into a molecular square host.
    West KR; Ludlow RF; Corbett PT; Besenius P; Mansfeld FM; Cormack PA; Sherrington DC; Goodman JM; Stuart MC; Otto S
    J Am Chem Soc; 2008 Aug; 130(33):10834-5. PubMed ID: 18646752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA Origami Catenanes Templated by Gold Nanoparticles.
    Peil A; Zhan P; Liu N
    Small; 2020 Feb; 16(6):e1905987. PubMed ID: 31917513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A catenane that is topologically achiral despite being composed of oriented rings.
    Pairault N; Rizzi F; Lozano D; Jamieson EMG; Tizzard GJ; Goldup SM
    Nat Chem; 2023 Jun; 15(6):781-786. PubMed ID: 37169983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Halogen- and hydrogen-bonding catenanes for halide-anion recognition.
    Gilday LC; Beer PD
    Chemistry; 2014 Jul; 20(27):8379-85. PubMed ID: 24888346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual selectivity expressed in [2 + 2 + 1] dynamic clipping of unsymmetrical [2]catenanes.
    Koshkakaryan G; Cao D; Klivansky LM; Teat SJ; Tran JL; Liu Y
    Org Lett; 2010 Apr; 12(7):1528-31. PubMed ID: 20199052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bovine mitochondrial peroxiredoxin III forms a two-ring catenane.
    Cao Z; Roszak AW; Gourlay LJ; Lindsay JG; Isaacs NW
    Structure; 2005 Nov; 13(11):1661-4. PubMed ID: 16271889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles.
    Au-Yeung HY; Yee CC; Hung Ng AW; Hu K
    Inorg Chem; 2018 Apr; 57(7):3475-3485. PubMed ID: 29227636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calix[4]arene-based bis[2]catenanes: synthesis and chiral resolution.
    Molokanova O; Bogdan A; Vysotsky MO; Bolte M; Ikai T; Okamoto Y; Böhmer V
    Chemistry; 2007; 13(21):6157-70. PubMed ID: 17465427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the structure of dimeric DNA catenanes by electron microscopy.
    Levene SD; Donahue C; Boles TC; Cozzarelli NR
    Biophys J; 1995 Sep; 69(3):1036-45. PubMed ID: 8519958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.